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PBM MODELS: DEVELOPMENT AND
NUMERICAL SOLUTION

Steady-state PBM model

In simulating a wet ball milling operation for design or control
purposes, today, most people use the PBM method. Even when
the plot of the product from a mill is a straight line, the method of
solution is to use matrix algebra to find the mill matrix, M, from
idealised feed, F, and mill product, P, matrices, that is, solve the
Inverse Problem. The relationship between M, F and P is:

(Fuerstenau et al, 1984; Herbst and Fuerstenau, 1980; Klimpel,
1970; Klimpel, 1991; Kapur, 1972). Considerable effort has been
expended in also normalisation of the selection and breakage rate
functions (Arbiter and Bhrany, 1960). ,

The selection and breakage functions are not lumped together
as in the steady-state mill matrix. The dynamic PBM introduces
more unknowns than the steady-state PBM, that is, the kinetic
terms or breakage rate functions.

'M is a sparse, square, n by n, steady-state, probabilistic
(stochastic) matrix; n is the number of particle size classes into
which the particle feed has been arbitrarily divided. The top
particle size is designated one and the bottom size is designated
size n. F and P are n by one, column matrices. The elements of
M, the mij of row i and column j, are all fractions, less than one.
The value of mij, is the probability of a particle in the j-th particle
size class being broken into the i-th particle class. For transient
analysis the mij are Laplace-transformed differential equations. In
the absence of any agglomeration phenomenon, mij is zero for all
j > i. In addition, conservation of mass requires that:

(2)

(1)

n

L,mij= 1.0 foreachj
i-1

MF-P

INTRODUCTION

ABSTRACT

Several important, fundamental aspects of the grinding behaviour of
mineral systems are addressed. The Levenberg-Marquardt algorithm for
systems of constrained non-linear equations was used to solve the
steady-state and dynamic population balance model (PBM) grinding
equations to obtain the mill matrices and grinding selection and breakage
rate functions, respectively. The fact that the PBM model equation
Inverse Problem is degenerate or underspecified is demonstrated.
Multiple solutions to the same PBM equations are provided. It is shown
that there is no unique solution to the Inverse Problem unless additional
constraints are provided or assumptions are made 'such as the
Arbiter-Bhrany nonnalisation assumption. The severity of the
non-uniqueness problem for steady state grinding is demonstrated in
several examples using typical feed distributions and mill matrices. In
addition, it is also demonstrated that when higher than single powers are
used in steady-state mill matrix expressions during simulation or
calculation (or iterative procedures are used during numerical simulation)
and four or more size intervals are used considerable amount of error is
propagated throughout any calculation. Each solution to a PBM, while
giving the same prediction during a single mill pass, gives different
solutions or predictions for mill composition upon subsequent passes. In
addition, it is shown that there is a problem with building up a grinding
mill knowledge base with PBMs. A similar analysis was done for the
dynamic or kinetic PBM equations. The fact that the dynamic PBM
Problem is degenerate or underspecified is also demonstrated. Multiple
solutions to the same dynamic PBM equations are provided. Again, it is
shown that there is no unique solution to the Inverse Problem unless
additional constraints are provided or assumptions are made such as the
nonnalisation assumption. Each solution to a dynamic PBM, while
giving the same prediction for a given grinding time interval, gives
different solutions or predictions for mill composition for other grinding
times. Actual experimental grinding data was assessed to determine the
functionality of mill selection and breakage functions. The functionalities
obtained through constraints were compared with those obtained with the
nonnalisation assumption of Arbiter-Bhrany which relates breakage
functions to particle size distribution. The capability of the population
balance model to predict grinding behavior over time in various mineral
grinding systems was assessed. 1he required functionality of selection
and breakage functions for effective prediction of grinding behavior in
mineral systems is discussed.

The PBM for simulating comminution in grinding mills has been
solved assuming linearity using matrix methods (Broadbent and
Calcott, 1960; Meloy and Gaudin, 1962; Agar and Charles, 1962;
Meloy and Bergstrom, 1964; Reid, 1965; Mika, 1970; Herbst and
Mika, 1970; Klimpel and Austin, 1970; Austin, 1971; Kapur,
1972; Malgan and Fuerstenau, 1976; Herbst et al, 1971;
Fuerstenau et al, 1984; Meloy and Williams, 1992 a and b).

Selection and breakage functions are lumped into a steady-state
mill matrix. This steady-state mill matrix is multiplied (on the
right side) by the feed matrix which describes the particle size
distribution entering the mill. This multiplication yields the mill
product matrix which describes the size distribution of the
particles exiting the mill. In practice one creates the mill matrix
by measuring the size distribution of the feed and product, then
calculating the mill matrix by various methods. This is referred
to as solving the Inverse Problem.

The dynamic (time-variant) PBM for simulating comminution
in grinding mills has also been solved assuming linearity
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Hence, mM must be one.
A typical five by five mill matrix is:

mu m12 m13 m14 m1S 0.30 0 0 0 0
m21 m22 m23 mu m2S 0.30 0.3 0 0 0

M = m31 m32 m33 m34 m3S = 0.15 0.3 0.4 0 0
~1 ~2~3m« ~S 0.15 0.2 0.4 0.5 0
mS1 mS2 mS3 mS4 mss 0.10 0.2 0.2 0.5 1.0

A typical feed distribution with slope of unity is given by:

11 0.516
h 0.258

F= 13 0.129
14 0.064
Is 0.033

For the case when M and F are known, the product matrix by
matrix algebra is:
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P1
Pz

PF=MF= P3
P4
Ps

0.155
0.232
0.206
0.213
0.194

s
Pj= I mijjj for 5;:: i> 1 (3)

j-1

From the conservation of mass described in Equation. 2, the
additional conservation equations can be generated from the
following equation:

For the Inverse Problem there are 14 unknowns and only nine
equations. Consequently, the solution is degenerate or
underspecified. Normalisation or constraint equations need to be
added to obtain a solution. The steady-state PBM constraint
equations can be generated from:

Figure 1 shows the mill matrix operating on the feed five times
in succession. Note that some product exits in the topsize at all
times. For the case that P and F are known, the problem (Inverse
Problem) is to find M. For the case of wet grinding in a ball mill
where all the top size is ground away during a small time interval,
mu and Pt must both be zero. With these constraints, the number
of unknowns in the mill matrix are reduced. The mill matrix
becomes:

s
Imij=l.O for 5;::j;:: 1
;;1

(4)

00000
mZ1 m'}2 0 0 0

M = m31 m32 m33 0 0
~1 ~Z~3 ~ 0
mS1 msz mS3 mS4 mss

In this example, there are 14 unknowns in the mill matrix. By
performing the matrix multiplication of M and F, four equations
relating the Pj to the mij and fj can be developed. They can be
generated from the following equation:

Dry
Xo

1 0

?It ./ ../

./ ./'

..".....
r"

0,1
0.1

(5)

Dynamic PBM model

The dynamic PBM model, also based on conservation of mass in
the mill, uncouples the breakage rate and selection functions and
introduces time as a variable. The ki is the rate of breakage of
particle size i in the mill, while the bij are the breakage selection
functions for the breakage of particles from class j into class i.
The dynamic conservation of mass equations describing the

Grinding
• 1.0 mm

IQ

-l- Pl04ull

~ Plohel 4

~ Plohel 2

~ Ploher 5

FIG 1 - Plot from a typical dry grinding mill showing the breakage at various times during which the topsize in the mill does not change.
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dynamic PBM model have been developed elsewhere (Herbst and
Fuerstenau, 1980). The primary dynamic PBM conservation of
mass equations for five particle sizes follow:

PI = 11 +J(PI* (-kl» <it (6)

P2 = fz +J(PI*kl*b21) dt - J(k2*P2) dt (7)

P3 =/3 +J(PI*kl*b31) d; +J(p2*k2*b32) dt - J(Ic3*P3) <it (8)

P4=/4 +J(Pl*kl*b41) dt+ J(P2*k2*b4i) dt +J(P)*k3*b43) <it - J(/"'*P4) <it
(9)

The integrals are all evaluated from time zero to the grinding
time, trn. In addition to Equations 6 - 10, the following
conservation expression yields additional equations.

"

DISCUSSION

Steady-state PBM
The degeneracy or underspecifity of the steady-state PBM
solution is problematic. There is no unique solution to 'the
Inverse Problem unless additional constraints are provided or
further assumptions made.

The severity of the nonuniqueness problem is demonstrated in
the following example. Consider a typical feed distribution given
by:

11 0.400
fz 0.300

F= /3 0.200
14 0.050
Is 0.050

Assume an initial mill matrix M1 is given by:

As with the steady-state PBM equation, the solution is
degenerate or underspecified. For the Inverse Problem there are
more unknowns than equations. Assumptions such as the
Arbiter-Bhrany (1960) normalisation equation regarding the bij
and ki or additional constraints are required for solution. The
dynamic PBM constraint equations can be generated from:

Lt bij= 1.0 foreachj
i-I

(11) mu m12m13 m14 mlS .125 .000 .000 .000 .000
m21 mzz m23 m24 mzs .100 .033 .000 .000 .000

M = m31 m32 m33 m34 m3S = .300 .250 .025 .000 .000
ffl41 ffl42 ffl43 ffl44 ffl4S .430 .200 .340 .000 .000
mSl mS2 mS3 mS4 mss .045 .517 .635 1.00 1.00

The product matrix by matrix algebra is:

(12)

STEADY-STATE AND DYNAMIC PBM
SOLUTION METHOD

PI
P2

P=MF= P3
P4
Ps

0.05
0.05
0.20
0.30
0.40

The Levenberg-Marquardt (L-M) method was used to obtain both
the steady-state and dynamic direct and Inverse Problem
solutions to the PBM model (ANL, 1980; Levenberg, 1944;
Marquardt, 1963). Solution of the steady-state equations
involves the solution of a set of constrained or unconstrained
algebraic linear or non-linear equations. The dynamic PBM
solution involves the solution of a set of constrained or
unconstrained linear or non-linear integral equations.

The L-M method is a quasi-Newton method which is a
variation on the gradient method. The method involves. finding
the zeros of a vector of functions. In general, with these methods
the simultaneous functions are approximated using a Taylor
series. The equations are manipulated resulting in an explicit
expression for new estimates of the x vector calculated from
partial derivatives and the old x vector values. The procedure
continues until there is no significant difference between
estimated and old x vector values.

At each step in the actual procedure an error function is
generated. The first partial derivatives of the error function with
respect to the variables to be solved are determined in order to
create a Jacobian matrix. The matrix equation solved is:

Now the coefficient m32 in M1 above can be varied from 0.25
to 0.1O. The mill matrices become:

mu m12 m13 m14 mlS .125 .000 .000 .000 .000
mu m22 m23 m24 mzs .100 .033 .000 .000 .000

M2 = m31 m32 m33 m34 m3S = .300 .200 .100 .000 .000
ffl41 ffl42 ffl43 I7l44 ffl4S .430 .200 .340 .000 .000
mSl mS2 mS3 m54 mss .045 .567 .560 1.00 1.00

mu m12 m13 m14 mlS .125 .000 .000 .000 .000
m21 mzz m23 m24 mzs .100 .033 .000 .000 .000

M3 = m31 m32 m33 m34 m3S =' .300 .150 .175 .000 .000
ffl41 ffl42 ffl43 I7l44 ffl4S .430 .200 .340 .000 .000
mSl mS2 mS3 m54 mss .045 .617 .485 1.00 1.00

mu m12 m13 m14 mlS .125 .000 .000 .000 .000
m21 m22 m23 m24 mzs .100 .033 .000 .000 .000

M4= m31mnm33m34m3S = .300.100.200 .000 .000
ffl41 ffl42 ffl43 I7l44 ffl4S .430 .200 .340 .000 .000
mSl mS2 mS3 m54 mss .045 .667 .410 1.00 1.00

(13)

where J is the Jacobian matrix, s is the vector step to take to
generate the next estimate of unknown variables, f(x) is the error
function vector, and x is the vector of current estimates for
unknown variables. For the first step, x is the vector of initial
guesses. Subsequent x vectors are the sum of the previous x
vectors and the s vector for that step. Computation of s was done
by inverting the Jacobian at each step. For the sake of brevity,
the algorithmic details of the technique are presented elsewhere
(ANL 1980).

The reader can verify that the matrix product for each of these
four Mi (i = 1,2,3,4) with the same F matrix is indeed the same P
matrix.

It is interesting to further note that if one multiplies the Mi F
matrix by Mi (for each i) again, one obtains the wide range of
values shown in Figure 2 for the various Mi. Obviously, when
higher order terms are used involving mill matrix expressions
during simulation or calculation (or iterative procedures are used
during numerical simulation) and four or more size intervals are
used, considerable amount of difference exists among the various
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FIG 2 - The demonstration of the impact of nonuniqueness in PBM solutions involving higher order tenns.

Inverse Solutions. This can result in a significant error
propagation throughout any calculation. These errors could
become significant when the grinding mills are placed into
circuits or networks (Meloy, 1983; Williarns and Meloy, 1983).

Underlying the numerical solution to the Inverse Problem is the
assumption that the steady-state mill matrix is independent either
of time or the size distribution of the feed, that is to say, both the
selection and breakage matrices are. time and particle size
distribution invariant. As was shown by Meloy and Williarns
(1992 a and b) and Meloy et al (1990), for some wet grinding ball
mill simulations, this assumption of linearity is not valid.

In wet grinding plots of the product from the mill (Fuerstenau
and Sullivan, 1961; Coghill and Devany, 1937), when plotted as a
log mass cumulative finer, are a series of parallel straight lines,
M(x), versus log particle size, x (Figure 3). It is in this case, when
the plot of the mill product is a straight line, that the linearity
assumption and the matrix methods are both mathematically and
physically incorrect.

If, when sampling the product from a wet ball mill, there are
two straight line plots for the product at two different grinding
times, the larger size distribution of the earlier sampling time can
be considered to be the feed for the smaller size product of the
later sampling time. If one looks at the difference in the top size

particles between any two straight lines, one observes that all the
particles in the top size range have been completely ground away
- all the top size particles are gone. This means the probability of
a particle in this largest top size fraction begins broken is
identically one, not approximately one. No matter how close
together the straight line plots for the mill product are (how short
the grinding time), the probability that the largest particle will be
broken is one. Put" another way, the largest particle size is broken
out of its class in an infinitely short time interval, that is,
instantaneously. This is physically unrealistic.

Finally, the authors often noted in solving the steady-state
PBM equations with the L-M technique, that the assumptions of
normalisation could result in physically impossible solutions.
When the normalisation assumption was used rather than the
constraint equations, negative mij values were sometimes
obtained. No negative values were ever obtained using the
constraint equations.

DynamicPBM

In order to assess the dYnamic PBM actual grinding data was
used (Klimpel, 1970). The following product P(tm=6) and feed
composition Fa used was for anthracite coal being ground for six
minutes:
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Wel Grinding
M-I;Topslze - 0,1 1 0,25 1 and o,5 0 mm
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FIG 3 - Plot of product size distribution from a wet grinding mill showing the straight-line breakage at various times showing
that the topsize (largest particle) in the mill changes (slope m is 1).

/1
fz

Fa = /:J
/4
/S

0.250
0.300
0.240
0.200
0.010

bll b12 b13 bl4 blS .000 .000 .000 .000 .000
b21 1n2 bz3 b24 b25 .443 .000 .000 .000 .000

Bc = b31 b:J2/m b34 b3S = .197 .404 .000 .000 .000
b41 b42 b43 b44 b4S .000 .200 .449 .000 .000
bSl bS2 bS3 b54 bS5 .359 .396 .551 1.00 .000

The L-M algorithm was used to predict the perfonnance of the
mill at 18 and 30 minutes. In the first example, inequality
constraints were solved simultaneously with the conservation
equations. The following solution was obtained:

/1
/2

P(tm =6) = /:J
/4
/S

0.100
0.100
0.100
0.200
0.500

0.250
0.444
0.462
0.148
0.000

In the second example, the selection functions were
nonnalised. The nonnalisation procedure eliminates enough
unknowns to pennit solution. The nonnalisation equations are:

b41 = bS2 (14)

b42 = bS3 (15)

b:Jl = b42 (16)

b:J2 = b43 (17)

1nl = b:J2 (18)

The following solution with the L-M algorithm was obtained:
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kI 0.250
k2 0.428

Kim = k3 0.551
!4 0.237
ks 0.000

bll bI2 bI3 b14 bIS .000 .000 .000 .000 .000
b2I bn b23 b24 b2s .380 .000 .000 .000 .000

Bn = b3I b32 b33 b34 b3s = .620 .380 .000 .000 .000
b4I b42 b43 b44 b4S .000 .620 .380 .000 .000
bSI bS2 bS3 bS4 bss .000 .000 .620 1.00 .000

The existence of non-unique solutions to the dynamic PBM
which was just illustrated is, of course, problematic for
researchers and industry. A dilemma is created as to which
solution is correct and whether it is impossible to build up any
type of a breakage selection and rate function knowledge base.

When one compares the functionality of the kinetic and
breakage rate functions obtained through the constrained and
normalisation approaches, one sees immediately the problems
possible with a force fit - the possible violation of conservation of
mass constraints resulting in negative values. Examination of K
and B indicate that most deviation occurs in the smallest sizes.

An interesting additional problem also arises during the course
of dynamic mill simulation. Predictions of time-varying
performance of mills using different solution of dynamic PBM
models, leads to predictions which deviate at long grinding times
especially for the smaller size fractions. When the two different
dynamic solutions (normalised (n) and constrained (c)) above are
used to predict the performance at 18 and 30 minutes, the
predictions begin to diverge, particularly for the smaller sizes.
This can be seen in Figure 4. The problem could be expected to
be magnified in mill circuits.

It should be noted that if the normalisation constraints are used
for the selection breakage functions (B), errors can be created in
the kinetic parameters to accommodate force fits to normalisation
assumptions.

Functionality of mill selection and breakage rate
functions

The non-uniqueness observations previously discussed are not
trivial and may have contributed to the difficulty experienced in
developing a body of knowledge about selection and breakage
functions that are transferable from mill to mill. Generalisable
comminution information has not yet appeared in the literature
and is indicative of the existence of the non-linear problems in
thePBM.

Cumulative Mass Finer
1.2 ....--------------------------.......

0.6

1r==~~===I::=====:::::::==t::===_--J
0.8

0.4

0.2

60100200

size fraction
600

O'---------L------...L-------L.--------J
1000

C 8 mln

-e- Ne mln

-+- 018 mln

~ N 18 mln

...... C 30 mln

-+- N 30 mln

FIG 4 - The deviation of dynamic PBM model fits to experimental anthracite grinding data versus time.
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The non-uniqueness of the solution, while a problem inherent
in the solution of all PBMs wherever they are used, is not the
only problem with PBMs. Another problem is the assumption
that the elements of M or B are invariant with respect to time,
composition (size distribution), rheology, temperature, slurry
density, etc. The effect of these factors has been measured
(Fuerstenau et aI, 1984; Klimpel, 1991; Klimpel, 1992).

In wet grinding Meloy and Williams (1992 a and b) have
shown that the steady-state mij must be functions of the mill
conditions such as mill loading and/or particle size distribution.
A new mill matrix must be developed for each grinding time
interval- or for each size distribution in the mill. The supposition
of time variant M and B elements contradicts the basis linearity
assumption used to justify the constancy and interrelatedness of
the breakage and selectivity functions used to generate mill
matrices. Thus, one cannot use the Arbiter-Bhrany (1960) or
other such relationships, because the assume the matrix elements
are constant over time.

Once the selection function becomes a function of the particle
size distribution in the mill, then simulation using the PBM fails
because the selectivity function is continuously varying. This
means that even though two identical mills operate under nearly
identical conditions, they will not have the same selectivity
function.

Steady-state PBM mill matrices and the dynamic PBM
selection and breakage rate functions are complex arrays
composed of hundreds if not thousands of arbitrary constants
which are arbitrarily chosen or curve fitted. With this number of
arbitrary constants, a reasonable simulation of almost any
phenomena can be made. It is, therefore, in surprise that pseudo
mill matrices can be found to simulate a given wet mill for a
given set of conditions, but this matrix is valid but for a fleeting
instant in time. Unfortunately, these pseudo mill matrices are not
transferable, they cannot be generalised, and thus they cannot be
found in the literature.

CONCLUSIONS

An in depth review of the PBM used to simulate industrial wet
grinding has found major flaws in the model showing:

1. There in no unique solution to the steady-state or
dynamic PBM models. Several solutions were identified
to yield the same product with the same feed matrix.

2. When steady-state mill matrix solutions were squared,
significantly different product matrices were obtained.

3. Solution of dynamic PBM models using normalisation
rather than mass balance constraints can lead to
physically unrealisticsolutions.

4. Predictions of time-vatying performance of mills using
different solution of dynamic PBM models, leads to
predictions which deviate at long grinding times
especially for the smaller size fractions.

5. Because of the non-uniqueness of PBM inverse solutions
and the non-linearity of the mill matrices and selection
and breakage rate functions for most commercial grinding
circuits, no set of general mill selection functions and
breakage rates have appeared or are likely to appear in the
literature.

6. A useful line of comminution research. would be to
measure how the mill selection and breakage rates vary
with the size distribution of the particles within the mill,
as well as other mill conditions, such as slurry density,
rheology, temperature etc.
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