TECHNICAL NOTES 5

CRUSHERS

© Copyright R P King 2000

5.1 Jaw and Gyratory Crushers.

Jaw and gyratory crushers are used mostly for primary crushing. They are characterized by wide gape and narrow discharge and are designed to handle large quantities of material.

The capacity of the crusher is determined by its size.

The gape determines the maximum size of material that can be accepted. Maximum size that can be accepted into the crusher is approximately 80% of the gape.

Jaw crushers are operated to produce a size reduction ratio between 4:1 and 9:1. Gyratory crushers can produce size reduction ratios over a somewhat larger range of 3:1 to 10:1.

The primary operating variable available on a crusher is the set and on jaw and gyratory the openside set (OSS) is specified. This reflects the fact that considerable portions of the processed material fall through the crusher at OSS and this determines the characteristics size of the product. The set of a crusher can be varied in the field and some crushers are equipped with automatically controlled actuated for the automatic control of the set. The open- and closed-side sets and the gape are identified in Figure 5.1. The throw of the crusher is the distance that moving jaw moves in going from OSS to CSS.

Figure 5.1 Schematic diagram of a crusher showingg the open- and closed-side settings.

Throw = OSS-CSS.

The capacity is a function of size and OSS. Manufacturers publish tables of capacity for their crushers of various size as a function of the open-side set.

5.1.1 Cone crushers

Cone crushers are commonly used for secondary, tertiary and quaternary crushing duties. Two variations are available - standard and short head

The chief difference between cone and gyratory or jaw crushers is the nearly parallel arrangement of the mantle and the cone at the discharge end in the cone crusher. This is illustrated in Figure 5.2.

Reduction ratios in the following ranges are common for cone crushers:

6:1 - 8:1 for secondaries

4:1 - 6:1 for tertiary and quaternary crushing.

The size distribution of the products tends to be determined primarily by the CSS since no particle can fall through during a single open side period and all particles will experience at least one closed side nip.

The CSS is adjusted by screwing the bowl up or down.

5.1.2 Impact crushers

Breakage is achieved by impact using either hammer action on the individual particles or by sudden impact from a high velocity trajectory.

High reduction ratios of between 20:1 and 40:1 can be achieved with hammer type impact crushers.

Only low reduction ratios of about 2:1 can be achieved with kinetic energy type impact crushers.

5.1.3 Crushing mechanisms and product size distributions.

The crushing action of a crushing machine is described most usefully through the classification - Figure 5.2 Schematic view of the crushing breakage cycle model. The operation of a crusher is zone of the cone crusher. periodic with each period consisting of a nipping

action and an opening action. During the opening part of the cycle material moves downward into the crusher and some material falls through and out. A certain amount of fresh feed is also taken in. This is illustrated in Figure 5.3.

Let us now describe this behavior quantitatively. It is best to work with a discrete size distribution. So define

- p_i^F = fraction of the feed in size class *i*,
- = fraction of the product in size class i, p_i
- = mass of material held in the crusher. М
- = fraction of particles breaking in size class b_{ii} *j* by that end up in size class *i*.
- m_i = fraction of material in the crusher in size class *i*
- $= c(d_i)$ C_i

eec

Broken particles fall through

Opening

Feed

Some particles proken

Nipping

the crusher.

W = Mass of total feed that is accepted during a single opening = mass of product discharged.

Size class 1 contains the largest particles.

Let us follow the fortunes of material in the largest size class starting with an amount Mm_1 in the crusher.

During an opening phase of the cycle:

Material discharged from the crusher = $(1-c_1)Mm_1$ Material positioned for breakage in the breakage zone during next nip = c_1Mm_1 Accepted from feed = Wp_1^F

After the next nip the crusher must again have an amount Mm_1 in the crushing zone since the operation is at steady state:

$$Mm_{1} = Wp_{1}^{F} + c_{1}Mm_{1}b_{11}$$

$$\frac{Mm_{1}}{W} = \frac{p_{1}^{F}}{1 - c_{1}b_{11}}$$
(5.1)

Product discharged = $Wp_1 = (1-c_i)Mm_i$

$$p_1 = (1 - c_1) \frac{Mm_1}{W}$$
(5.2)

Now consider the next size down:

During an opening phase of the cycle:

Material discharged = $(1-c_2)Mm_2$ Material positioned for breakage during next nip = c_2Mm_2 Accepted from feed = Wp_2^F

After next nip:

$$Mm_{2} = Wp_{2}^{F} + c_{2}Mm_{2}b_{22} + c_{1}Mm_{1}b_{21}$$

$$\frac{Mm_{2}}{W} = \frac{1}{1 - c_{2}b_{22}} \left(p_{2}^{F} + c_{1}\frac{Mm_{1}}{W}b_{21} \right)$$
(5.3)

Product discharged = $Wp_2 = (1-c_2)Mm_2$

$$p_2 = (1 - c_2) \frac{Mm_2}{W}$$
(5.4)

The next size down can be handled in exactly the same way to give

$$Mm_{3} = Wp_{3}^{F} + c_{3}Mm_{3}b_{33} + c_{2}Mm_{2}b_{32} + c_{1}Mm_{1}b_{31}$$

$$\frac{Mm_{3}}{W} = \frac{1}{1 - c_{3}b_{33}} \left(p_{3}^{F} + c_{2}\frac{Mm_{2}}{W}b_{32} + c_{1}\frac{Mm_{1}}{W}b_{31} \right)$$
(5.5)

This procedure can be continued from size to size.

In general

$$\frac{Mm_i}{W} = \frac{1}{1 - c_i b_{ii}} \left(p_i^F + \sum_{j=1}^{i-1} c_j \frac{Mm_j}{W} b_{ij} \right)$$
(5.6)

The series of equations (5.6) can be easily solved recursively for the group Mm_i/W starting from size class number 1. The size distribution in the product can then be calculated from

$$p_{i} = \frac{(1-c_{i})Mm_{i}}{W} = \frac{1-c_{i}}{1-c_{i}b_{ii}} \left(p_{i}^{F} + \sum_{j=1}^{i-1} c_{j}\frac{Mm_{j}}{W}b_{ij} \right)$$
(5.7)

And the distribution of sizes in the product is completely determined from the size distribution in the feed and a knowledge of the classification and breakage functions.

The classification function is usually of the form shown in Figure 5.4.

 d_1 and d_2 are parameters that are characteristic of the crusher. They are determined primarily by the setting of the crusher. Data from operating crusher machines indicate that both d_1 and d_2 are proportional to the closed side setting. d_1 is the smallest size particle that can be retained in the crushing zone during the opening phase of the cycle. d_2 is the largest particle that can fall through the crushing zone during the opening phase of the cycle.

A useful form of the classification function is

For both standard and short-head Symons cone crushers,

Figure 5.4 A typical internal classification function for a crusher

$$d_1 = \alpha_1 CSS \tag{5.9}$$

$$d_2 = \alpha_2 CSS + d^*$$
 (5.10)

 α_1 varies from about 0.5 to 0.95 and α_2 varies from about 1.7 to 3.5. *n* is usually approximately 2 but can be as low as 1 and as high as 3. Higher values of n usually require higher values of α_2 . d^* is usually set to 0.

Breakage functions of the type

$$B(x;y) = K\left(\frac{x}{y}\right)^{n_1} + (1-K)\left(\frac{x}{y}\right)^{n_2} \quad (5.11)$$

are normally used to describe crusher behavior.

The values of b_{ij} can be obtained from the cumulative breakage function by

$$b_{ij} = B(D_{i-1}; d_{pj}) - B(D_i; d_{pj})$$
 (5.12)

and

$$b_{jj} = 1 - B(D_j; d_{pj})$$
 (5.13)

Figure 5.5 The breakage function for crushing machines. This function has a value 1 at the representative size of the parent class. represents the fraction of material that remains in Compare this with the breakage function used for grinding machines.

size interval j after breakage. These relationships are illustrated in figure 5.5. n_1 is approximately 0.5 for both standard and short-head crushers and n_2 is approximately 2.5 for short-head and 4.5 for standard crushers.

The parameters in the classification and breakage functions are obviously specific to the type and size of crusher. Unfortunately not many studies have been done to establish their values under a range of actual operating conditions. In practice it is often necessary to estimate them from measured particle distributions in the products from operating crushers. Once established for a particular material in a particular crusher, they should be independent of the closed side set. This allows the crusher performance to be simulated at the various CSS.

Model based on:

- 1. Whiten W.J. Walter G.W. and White M.E. A breakage function suitable for crusher models. 4th Tewkesbury Symposium, Melbourne (1979) p 19.1 19.3.
- 2. Whiten W.J. The simulation of crushing plants. Application of computer methods in the mineral industry. Apcom 10 S.Afr. Inst of Mining and Metall. Johannesburg (1973) p 317-323.
- 3. Karra V.K. A process performance model for ore crushers. Proc. 4th Int. Min. Proc. Congress Toronto (1982) III p 6.1-6.14.

Table 3.1 Approximate capacities of jaw crushers in tonnes/hr.

The size designation used here is the traditional one in which the feed opening is specified as gape \times length in inches.

Size Feed	Max rpm of flywheel	Motor kW	Open-side setting mm											
opening			25	32	38	51	63	76	102	127	152			
10×20	300	15	12.7	15.4	18.2	23	31							
10×24	275	11	14.5	17.3	20	23	30							
15×24	275	22		20.9	24.5	31	38.1	45.4						
14×24	275	19			23.6	30	37.2	45.4						
24×36	250	56				70	86.3	103	136					
30×42	200	75					113	136	118 2	227	272			
			Open side setting mm											
			63	76	102	127	152	178	203	229	254			
32×42	200	75			227	263	300	327	363					
36×48	180	93		189	245	300	354	409						
42×48	180	110				345	381	426	463	490	527			

48×60	170	150			436	481	517	554	600
56×72	120	186				454	500	567	617
66×84	90	225				700	772	863	950

Table 3.2 Approximate capacities of gyratory crushers in tonnes/hr.

Size	Speed	Motor	Open-side setting mm											
	rpm	kW	51	63	76	89	102	114	127	140	152			
30×60	425	150	313	381	450	508	567	630	695	760				
30×55	600	300		381	463	518	590	663	735	817				
36×60	375	186		458	540	604	680	755	830	900	970			
42×65	514	400						800	908	1017	1317	1500		
			Open-side setting mm											
		_	127	140	152	178	190	203	216	229	241	254		
42×70	380	300	708	790	863	944	1017	1090						
48×74	514	500	1544	1680	1816	1952	2088	2452						
48×80	330	500			1376	1462	1562	1662	1770	1870				
54×74	514	500		1634	1771	1907	2043	2180	2315					
54×80	330	500			1307	1394	1490	1580	1680	1770				
60×89	514	600			2270	2424	2580	2815	2960	3270				
			Open-side setting mm											
			190	203	216	229	241	254	267	279	292	305		
60×102	300	800		2542	2760	2974		3396		3827		4254		
60×109					3904	4195	4485	4776	5067	5357	5675	5993		

Size is specified as gape \times lower mantle diameter in inches.

Size (Max.	Type of cavity	Feed opening on the closed						Closed-s	ide settin	g			
power kW)		side [*] with minimum CSS mm	6	9	13	16	19	22	25	31	38	51	64
2 ft (22)	Fine Coarse Extra coarse	57 83 100	16	18 18	23 23 23	27 27 27	32 32 36	36 41 45	41 45 50	45 54 63	54 68 72		
3 ft (56)	Fine Coarse Extra coarse	83 119 163		45	59 59	72 72	81 91 99	91 99 109	118 118	136 136	163 163		
4 ft (93)	Fine Medium Coarse Extra coarse	127 156 178 231		63	91 99	109 118	127 136 140	140 145 154	154 163 181 190	168 181 199 208	199 245 254	308 317	
4½ ft (112)	Fine Medium Coarse Extra coarse	109 188 216 238			109	127 131	145 158 172	154 172 195	163 199 217 236	181 227 249 272	264 295 303	349 358	
5½ ft (150)	Fine Medium Coarse Extra coarse	188 213 241 331				181	204	229 258	258 290 290	295 335 354	326 381 417 431	417 453 476	635 680
7 ft (224) (260 EHD)	Fine Medium Coarse Extra coarse	253 303 334 425					381	408	499 607	617 726 789	726 807 843 880	998 1088 1179	1270 1380
10 ft (450)	Fine Medium Coarse Extra coarse	317 394 470 622						934	1179 1570	1469 1633	1632 1814 1905 1995	2267 2449 2630	2857 3084

Table 3.3 Approximate capacities of standard Symons cone crushers in tonnes/hr.

Open-circuit operation.

EHD = extra heavy duty.

Size (Max power kW)	Type of cavity	Recommended minimum CSS mm	Feed opening with minimum CSS mm		Closed-side setting mm								
			Closed side	Open side	3	5	6	10	13	16	19	25	
2 ft (22)	Fine Coarse	3 5	19 38	35 51	9	6 16	18 22	27 29	36 41				
3 ft (56)	Fine Medium Extra coarse	3 3 5	13 33 51	41 60 76	27 27	41 41	54 54 59	68 68 72	91 91 95	99 113	127		
4 ft (93)	Fine Medium Coarse Extra coarse	5 8 13 16	29 44 56 89	57 73 89 117		50	77	86 91	122 131 140 145	131 145 163 168	181 190	217	
4½ ft (112)	Fine Medium Coarse Extra coarse	5 6 8 13	29 54 70 98	64 89 105 133		59	81 81	104 104 109	136 136 158 172	163 163 181 190	199 254	227 238	
5½ ft (150)	Fine Medium Coarse Extra coarse	5 6 10 13	35 54 98 117	70 89 133 133		91	136 136	163 163 190	208 208 254 254	254 281 281	281 308 308	598 653	
7 ft (224) (260 EHD)	Fine Medium Coarse Extra coarse	5 10 13 16	51 95 127 152	105 133 178 203		190	273	326 354	363 408 453	408 453 481 506	506 544 589	598 653	
10 ft (450)	Fine Medium Coarse Extra coarse		76 102 178 203	127 152 229 254			635	735 798	816 916	916 1020 1125	1106 1224 1324	1360 1478	

Table 5.4 Approximate capacities of short head Symons cone crushers in tonnes/hr.

Open-circuit operation.

EHD = extra heavy duty.