KINETICS OF NATURAL DEGRADATION OF CYANIDE FROM GOLD MILL EFFLUENTS

KINETICS OF NATURAL DEGRADATION OF CYANIDE FROM GOLD MILL EFFLUENTS

by

LJUBICA SIMOVIC, B.Sc. (Eng.)

A Thesis

Submitted to the Faculty of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of Master of Engineering

McMaster University

May, 1984

```
MASTER OF ENGGLNEERING (1984)
(Chemical Engineering)
McMaster University
Hamilton, Ontario
TITLE:
KINETICS OF NATURAL DEGRADATION OF CYANIDE FROM GOLD
MILL EFFLUENTS
AJTHOR: Ljubica Simovic
B.Sc. (Eng) (University of Novi Sad, Yugoslavia)
SUPERVISORS:
Dr. W.J. Snodgrass, Associate Professor, Chemical Engineering Department
Dr. K.L. Murphy, Professor, Chemical Engineering Department
```

NUMBER OF PAGES: 369

ABSTRACT

Most Canadian gold mining facilities utilize the cyanidation process in which cyanide is added to sequester gold from the ore. After zinc addition, gold is precipitated from a gold-cyanide complex. Waste streams from the process generally contain a sufficiently high concentration of cyanide and heavy metals that treatment is essential.

The oldest treatment method practiced by Canadian gold mines for cyanide destruction is "natural degradation".

Based on the literature review of the previous studies, the most important mechanism in the natural degradation of cyanide was recognized as being volatilization. Among the variables affecting the volatilization process the three most important were selected for this study, namely: temperature, UV light and aeration rate. The experimental pH chosen was 7.0. In order to evaluate the relative importance of these variables a full 2^{3} factorial design was employed and appropriate experiments conducted over a period of one year.

The synthetic solutions examined were simple cyanide (NaCN), four single metallo-cyanide complexes ($\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe) and two mixtures - a "low mix" containing a low concentration of metals relative to the total cyanide concentration and a "high mix", saturated with metals.

Analysis of the results of the experimental design led to the conclusion that temperature had the largest effect upon reaction kinetics. The rate of aeration together with temperature had a significant effect upon the volatilization rate within the first 48 to 72 hours. Ultraviolet irradiation only had a significant effect upon the decay rate of the iron cyanide complex and low mix.

A mathematical model for the degradation of a single metallo-cyanide complex solution was postulated for a batch reactor taking into consideration the law of conservation of mass, and assuming that chemical equilibrium existed between hydrocyanic acid (HCN) and cyanide ion $\left(\mathrm{CN}^{-}\right)$. The rate of volatilization of $H C N$ and metal decay rate were the mechanisms assumed to be controlling the cyanide degradation process.

The best estimates of the metal decay coefficients from single metallo-cyanide solutions used to simulate the experimental data of the mixed metallo-cyanide solutions are as follows:

	k_{1} at $4^{\circ} \mathrm{C}\left(h^{-1}\right)$	k_{1} at $20^{\circ} \mathrm{C}\left(h^{-1}\right)$
$\mathrm{Na}_{2} \mathrm{Cu}(\mathrm{CN})_{3}$	0.00295	0.00753
$\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}$	0.01783	0.04496
$\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$	0.00044	0.00095
$\mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$	0.00143	0.00473

The model fits the data at the 95% confidence level for five of the eight test conditions; however, for the other three it is poorer.

The model, calibrated using coefficients from the synthetic solutions, has been applied to actual gold mill effluents. Results show that the model can be used for the basic estimate of the cyanide ii
degradation rate. For a more precise result, a recalibration of the model is necessary as a function of the particular gold mill effluent's metal content.

ACRNOWLEDGEMENTS

I would like to express my gratitude to Dr. W.J. Snodgrass and Dr. K.L. Murphy for their patient guidance, professional assistance and interest during the course of this research.

Many, with whom I have been fortunate to work, have also contributed to the completion of this project. Mr. J.W. Schmidt, Head, Physical/Chemical Processes Section, Wastewater Technology Centre, (WTC), provided scientific support and encouragement throughout the program. Mr. K. Conn, Head, Laboratory Services Section, and his staff, particularly Mr. J. Dupuis, gave excellent analytical support to the requirements of the project. Thanks are also due to Mr. R. Mercer, a student, for his assistance in the laboratory, my friend Mrs. N. Harper for her constant moral support and to Mrs. G. Graham and Mrs. D. Crabtree for undertaking the typing of the thesis.

Finally and most importantly, my deepest appreciation goes to my husband, Radé, not only for his support and self-sacrifice but also for his unfailing trust and optimism during the years required for this work. Special thanks go to my children, Nancy and Peter for their patience, love and understanding when it was most needed.

TABLE OF CONTENTS

Page
ABSTRACT i
ACKNOWLEDGEMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES x
1 INTRODUCTION 1
2 LITERATURE REVIEW 2
2.1 Cyanidation 2
2.2 Forms of Cyanides and Metals in Mining Wastes 8
2.2.1 Cyanide 8
2.2.2 Copper 9
2.2.3 Zinc 11
2.2.4 Nickel 12
2.2.5 Iron 13
2.3 Cyanide Chemistry 16
2.3.1 Free cyanide 16
2.3.2 Simple cyanides 18
2.3.3 Complex cyanides 19
2.4 Removal of Cyanide by Natural Degradation 27
2.4.1 Volatilization 27
2.4.2 Photodegradation 31
2.4.3 Chemical oxidation 33
2.4.4 Microbial oxidation 33
2.4.5 Thiocyanate formation 35
2.4.6 Cyanide in soil 36
2.4.7 Conclusion 37

Page

3 ANALYTICAL METHODOLOGY 39
3.1 Cyanide Determinations 39
3.2 Cyanate and Thiocyanate Determination 40
3.3 Metals Determination 41
4 SCREENING EXPERIMENTS 43
4.1 The Effects of Temperature, UV Light and Concen- 43
tration
4.2 Selection of Buffer and pH Level 48
4.3 The Effect of Aeration 53
4.4 The CO_{2} Effect 57
5 EXPERTMENTAL PROCEDURES AND ANALYSES OF EXPERIMENTAL RESULTS 59
5.1 Introduction 59
5.2 Full 2^{3} Factorial Design 59
5.3 Inspection of the Data 61
5.4 Rates of Reaction 64
5.4.1 General 64
5.4.2 Rate calculations 65
5.5 Examination of the Factors Affecting the 67
Volatilization of Free Cyanide
5.6 Comparison of Volatilization Rates 72
6 ANALYSIS OF EXPERIMENTAL DESIGN 76
6.1 Introduction 76
6.2 Results 78
6.3 The Effect of Aeration on NaCN Degradation 85
7 MODEL DEVELOPMENT AND CALIBRATION 90
7.1 Model Development 91
7.2 Parameter Estimation Method 95
8 EVALUATION OF SINGLE METALLO-CYANIDE SOLUTIONS RESULTS 98
AND DISCUSSION
8.1 Four Parameter Estimation Model 98
8.2 Three Parameter Estimation Model 103
8.3 Two Parameter Estimation Model 115
8.4 Parameter Estimation With Fixed MCN/TCN Ratio 117
Page
9 VERIFICATION STUDIES 124
9.1 Simulation on the Synthetic Mixes 124
9.1.1 Low mix 128
9.1.2 High mix 136
9.2 Evaluation of Model Calibration with Barren Solutions 143
9.2.1 Introduction 143
9.2.2 Simulations with the original k_{1} values 145
9.2.3 Analyses of barren solutions parameters 146
9.2.4 Simulations with the adjusted k_{1} values 151
10 CONCLUSIONS 159
11 RECOMMENDATIONS 162
REFERENCES 164
APPENDIX A 177
APPENDIX B 179
APPENDIX C 192
APPENDIX D 207
APPENDIX E 225
APPENDIX F 229
APPENDIX G 235
APPENDIX H 275
APPENDIX I 341
APPENDIX J 358

LIST OF FIGURES

FIGURE PAGE
2.1 Simplified Gold Mil Flowsheet 5
2.2 Relative Percentage of Hydrocyanic Acid and Cyanide Ion 17
in Solution as a Function of pH
4.1 The Setup for Bench Scale Experiments 51
5.1 Total Cyanide Degradation in Sodium Cyanide Solution 62
5.2 Typical Results of Total Cyanide Degradation in FeCN, 63Cu, Zn and Ni Cyanide Complex Solutions
5.3 a Volatilization Mass Transfer Coefficient k_{v} versus 68 Temperature
5.3 b Volatilization Mass Transfer Coefficient k_{v} versus UV 69 Light
5.3 c Volatilization Mass Transfer Coefficient k_{v} versus 70 Aeration
5.4 Typical Examples for 95\% CI on Part of the Degradation 75 Curve Attributed to Volatilization - NaCN versus Cu (a), Zn (b), Ni (c), Fe (d)
6.1 Half Normal Probability Plots ($\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe Cyanide Solutions)
6.2 Half Normal Probability Plot for $\mathbf{k}_{\mathbf{v}}$ for NaCN 89
7.1 Cyanide Degradation Model 93
8.1 Four-Parameter Estimation Model - Typical Fit of 99Predicted Values to Observed Data (Zn-CN, $20^{\circ} \mathrm{C}, \mathrm{AIR}$,UV)
8.2 Three-Parameter Estimation Model - FCN $>$ MCN 109
8.3 Three-Parameter Estimation Model - MCN > FCN 110

LIST OF FIGURES（Continued）

FIGURE PAGE
8．3a Three－Parameter Estimation Model－Estimated MCN 114
Values with 95\％Confidence Intervals－Cu
9．1 Low Mix Simulation $-20^{\circ} \mathrm{C}$ ，NO AIR，UV 130
9．2 Total Cyanide Degradation－Single Metallo－Cyanide 133Complex Solutions and Low Mix Cyanide Solutions $\left(4^{\circ} \mathrm{C}\right.$ ，NO AIR，UV）
9．3a High Mix－First Simulation（ $4^{\circ} \mathrm{C}$ ，NO AIR，NO UV） 138
9．3b High Mix－Second Simulation（ $4^{\circ} \mathrm{C}$ ，NO AIR，NO UV） 142
9．4 Barren Solution \＃1－Original 148
9．5 Barren Solution \＃1－Adjusted \mathbf{k}_{Cu} and \mathbf{k}_{Zn} 153
9．6 Barren Solution \＃2－a）Original；b）Adjusted k_{Cu} and 154

 \(\mathbf{k}_{\mathrm{Zn}}\)
 9．7 Barren Solution \＃3－a）Original；b）Adjusted k_{Cu} and 155 \mathbf{k}_{Zn}
9．8 Barren Solution $⿰ ⿰ 三 丨 ⿰ 丨 三 3$－a）Original；b）Adjusted k_{Fe} 157

LIST OP TABLES

TABLE

PAGE
2.1 Summary of Composition of Process Streams and Mi11 7Effluents for Selected Canadian Gold Milling Operations
2.2 Solubility of Minerals in Cyanide Solution 10
2.3 Solubility Products and Formation Constants of Cyanide 15 Compounds (Ingles, 1981a)
2.4 Oxidation States of Metals Forming Cyanide Complexes 20
4.1 Approximate Wavelength Limits for Transmission of 45 Various Optical Materials Near Room Temperature
4.2 The Test Conditions for Bench Scale Experiments 50
4.3 The Effect of pH on the Rate of Cyanide Removal 52 (Choice of Buffer)
4.4 Efeects of Cl^{-}and PO_{4}^{3-} on Cyanide Removal Rate 54
4.5 The Effect of Aeration 56
4.6 The Effect of CO_{2} on the pH Readings 58
5.1 Factorial Design Matrix 60
5.2 Factors Affecting the Rate of Volatilization of Free 73 Cyanide (Results of the Dot Diagram Analyses)
6.1 Reaction Rate Constant as the Response Variable 80
6.2 Results of 2^{3} Factorial Design in Terms of Relative 81Effects
6.3 Complete Results of the Full 2^{3} Factorial Design 84
6.4 The Response Variables and Effects - NaCN 87

LIST OF TABLES (Continued)

TABLEPAGE
6.5 Probability (\%) and Effects Arranged in Ascending Order 88(NaCN)
8.1 Estimated Metal Cyanide Decay Coefficients $k_{1}\left[h^{-1}\right]$ 100for Single Metallo-Cyanide Solutions (Four-ParameterEstimation Model)
8.2 Estimated Values of Volatilization Mass Transfer 101 Coefficients $k_{v}[\mathrm{~cm} / \mathrm{h}]$ (Four-Parameter Estimation Model)
8.3 Metal Cyanide to Total Cyanide Ratio - Four Parameter 104Estimation Model
8.4 The Estimated Metal Cyanide Decay Coefficient $k_{1}\left[h^{-1}\right]$ 105 at $k_{v}=0.93[\mathrm{~cm} / \mathrm{h}]$
8.5 a Three Parameter Estimation Model - Cu and Zn Cyanide at 107 k_{v} Average
8.5b Three Parameter Estimation Model - Ni and Fe Cyanide at 108 k_{v} Average
8.6 Results on Residual Sums of Squares in Two and Three 116 Parameter Estimation Models (PEM)
8.7 Number of Minimum RSS Values at the Particular MCN/TCN 119 Ratio
8.8 Results of the F Test 120
8.9 The Resutls of Three Parameter Estimation Model - 121 MCN/TCN $=0.17$
9.1 Estimated Metal Decay Coefficient Values $k_{1}\left(h^{-1}\right)$ at 125 $\mathrm{MCN} / \mathrm{TCN}=0.17$ (Averaged with Respect to Temperature)
9.2 Energy of Activation for k_{1} Between $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ 127
9.3 Initial Parameters used for the Model Simulation of the 129 Low Mix

LIST OF TABLES (Continued)

TABLE PAGE
9.4 Total Cyanide Values (Observed and Estimated) for Low 131 Mix Cyanide Solution
9.4a Verification of the Low Mix Model Simulation - Standard 135F Test (5\%) versus Modified F Test
9.5 The Initial Parameter Values for High Mix Cyanide 137 Solution (First Simulation)
9.6 Total Cyanide Values, Observed and Estimated for High 139Mix Cyanide Solution (Two Attempts)
9.7 The Initial Parameter Values for High Mix Cyanide 141 Solution (Second Simulation)
9.8 Barren Solution Parameters 144
9.9 The Initial Parameters Required for the Model 147 Simulation of Barren Solutions
9.10 Original Simulations on Barren Solution 149
9.11 Additional Barren Solutions' Parameters 150
9.12 Modified Simulation on Barren Solutions 156

INTRODUCTION

Cyanide and cyanide compounds are found throughout the environment. The natural origins of cyanide and its derivatives are many plants containing cyanogenic glycosides, which when hydrolyzed release hydrogen cyanide (Ecological Analysts Inc., 1979). Historically, however, cyanide in the environment has been associated with industrial point sources. Cyanides are extensively employed in industry and occur in effluents from many different industrial processes such as the case hardening of steel, electroplating and metal-finishing, the scrubbing of coke-oven or blast furnace gases, photography and the extraction of precious metals such as silver and gold.

A reasonable amount of information on the treatment of cyanide-bearing wastes from plating industry and iron and steel subprocesses is available. But little information is available on the treatment of gold milling effluents.

Most of the gold mined in Canada is extracted from the ore by the process of cyanidation. The cyanide-bearing waste streams from the process are the barren bleed and the washed tailings containing the waste rock. Typically, these wastes contain simple cyanides of sodium or calcium, the cyanide complexes of copper, iron (less frequently), nickel, and zinc, thiocyanates and at some mines, arsenic. In addition
to the toxic effects of cyanide these heavy metals can pose toxic problems. Their discharge may exceed the water quality criteria. The methods considered to offer the greatest possibility for cyanide removal from gold mill effluents are: natural degradation, oxidation processes (using chlorine gas, hypochlorite, ozone or hydrogen peroxide), acidification/volatilization/reneutralization, electrolytic processes, ion exchange and conversion to less toxic forms (such as ferrocyanide, thiocyanate, etc).

For a long time, natural degradation in tailings ponds has been the only method practiced by Canadian gold mines for cyanide destruction. When this method is applied, usually all cyanide-bearing waste streams are pumped to a common tailings pond. In this pond the solids settle and a clear solution, the tailings pond overflow, is discharged to the environment. The liquid residence time in the tailings pond may be of the order of several days or months during which time the process of natural degradation of cyanide occurs.

For a long time an engineering goal has been to evaluate the efficiency of tailings ponds in cyanide removal from a mechanistic point of view, in order to develop criteria for pond design. In this study, it was decided, that one way to accomplish this would be to substitute synthetic mixtures for actual gold mill effluents and examine the phenomenon of natural degradation of cyanide in more detail. For this purpose, the study uses a laboratory and modelling approach. The objectives of this research are as follows:
(1) to examine the natural degradation of cyanide in synthetic solutions;
(2) to delineate major factors affecting cyanide removal, and mechanisms involved; and
(3) to model the kinetics of cyanide removal and compare the results with observations on actual systems.

2 LITERATURE REVIEN

2.1 Cyanidation

Over 90\% of the gold mined in Canada is extracted from the ore by the process of cyanidation. This process consists of addition of sodium or calcium cyanide solution to the crushed and slurried ore in agitated and aerated tanks for up to 50 hours under alkali conditions (Figure 2.1). Elsner's equation has been suggested as being representative of the reaction that takes place during the dissolution of gold in dilute cyanide solutions (Hedley and Tabachnick, 1958):

$$
4 \mathrm{Au}+8 \mathrm{NaCN}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}=4 \mathrm{NaAu}(\mathrm{CN})_{2}+4 \mathrm{NaOH}
$$

The solution pH is controlled at a high level ($\mathrm{pH}=11$) using lime additions to prevent the volatilization of hydrogen cyanide gas. After clarification and filtration the pregnant solution containing gold is separated from the solids, and gold is precipitated from it by the addition of zinc dust. Zinc precipitation of gold is represented by the following equation:
$2 \mathrm{NaAu}(\mathrm{CN})_{2}+\mathrm{Zn}+\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}+2 \mathrm{Au}$

Pigure 2.1 Simplified Gold Mill Flowsheet

A gold free solution, called "the barren solution" is produced following precipitation. The barren solution contains cyanide, heavy metals ($\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe), thiocyanates, cyanates and sometimes arsenic.

Part of the barren solution is returned to the crushing and grinding circuit to aid in the cyanidation process. The remainder, called "the barren bleed" is discharged in order to avoid excessive accumulation of heavy metals in process waters.

As shown in Figure 2.1, the barren bleed constitutes only a portion of the total cyanide-bearing effluent to be disposed of - the other main effluent source is the washed filter residue containing the leached solids (tailings) plus repulping water and other miscellaneous streams (see Table 2.1). The barren bleed and washed tailings are usually combined and discharged to the tailings pond. After settling of solids, the tailings pond supernatant is left in the pond for a prolonged period of time to enhance natural degradation of cyanide. At some mines (e.g., Dome Mines Ltd. and Pamour-Schumacher Mines), waste barren solution (the effluent with the highest cyanide content) is segregated from the other cyanide-bearing solutions and retained in a separate pond for the purpose of natural degradation of cyanide.

TABLE 2.1. SUMAARY OF COMPOSITION OF PROCESS STREAMS AND MILL EFFLUENTS FOR SELECTED CANADIAN GOLD MILLING OPERATIONS

	$\begin{aligned} & \text { Flow } \times 10^{-3} \\ & \mathrm{~L} / \mathrm{d} \end{aligned}$	pH	$\begin{gathered} \text { Total CN } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{Zn} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \text { CNS }^{-} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$
Barren	150 to	11.3 to	86 to	6 to	10.2 to	0.28 to	0.1 to	42 to
Solution	560	12.2	650	275	237	10.0	35.7	510
Filtered*	191 to	10.2 to	27 to	3.0	1.02 to	0.1 to	0.1 to	16 to
Tailings	2,300	11.7	150	15.0	22.9	2.36	7.14	120
Tailings Pond	0 to	7.2 to	0.2 to	0.02 to	0.04 to	0.07 to	0.4 to	2 to
Effluents	13,600	8.3	48	37.3	0.82	0.7	5.2	72

Source: IEC, 1979.

* Samples filtered; results indicate soluble components.

2.2 Forms of Cyanides and Metals in Mining Wastes

2.2.1 Cyanide
The forms of cyanide in process waters are a result of reac-
tions during gold cyanidation process. These forms are not well known. The cyanide may be chemically or physically adsorbed on tailings mineral surfaces and/or it may have reacted with metallic and nonmetallic constituents in tailings to produce cyano complexes, thiocyanates and cyanates at the mineral surfaces or in the interstitial solutions (Huiatt et al., 1983).

Metal-cyanide complexes are produced by the reaction of cyanide with a variety of mineral types: oxides, carbonates, silicates and sulphides of copper, zinc, nickel and iron. In Canadian ores it is the sulphide minerals that usually predominate in the feed to the cyanidation process (Scott and Ingles, 1981).

It is usually thought that most of cyanide is in solution rather than adsorbed on suspended particles. The fact that cyanide is used to leach gold from the ore supports that theory. The large fraction of metal sulphides in solution oxidize to polysulphides and thiosulphates. Some cyanide reacting with them becomes converted to thiocyanate and as insoluble precipitates but much of it remains in metallo-cyanide complexes and free cyanide forms (Schmidt et al., 1981; Conn, 1984). Even if adsorbed on suspended particles, some of the cyanide ion can be slowly re-released into the water assuming that such adsorption phenomena are reversible (Caruso, 1975).

2.2.2 Copper

Many precious metal ores contain copper minerals such as: azurite, $2 \mathrm{CuCO} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$; malachite, $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$; chalcocite, $\mathrm{Cu}_{2} \mathrm{~S}$; chalcopyrite, CuFeS_{2}; cuprite, $\mathrm{Cu}_{2} \mathrm{O}$, etc. In these minerals copper may have an oxidation state ranging from +1 to +2 . Under the conditions normally used in cyanidation these minerals are readily and completely solubilized in weak cyanide solutions (Table 2.2). Copper combined with cyanide forms a variety of complexes. The complexation is particularly rapid at high pH values (Caruso, 1975). The complexes include simple complexes such as cupric and cuprous forms of cyanide and thiocyanate $\left(\mathrm{Cu}(\mathrm{CN})_{2}, \mathrm{CuCN}, \mathrm{Cu}(\mathrm{CNS})_{2}\right.$ and CuCNS$)$ and double copper cyanides with complex ions such as $\mathrm{Cu}(\mathrm{CN})_{2}^{1-}, \mathrm{Cu}(\mathrm{CN})_{3}^{2-}$, and $\mathrm{Cu}(\mathrm{CN})_{4}^{3-}$. Of the complex ions $\mathrm{Cu}(\mathrm{CN})_{3}^{2-}$ is considered the most probable to occur (Hedley and Tabachnick, 1958). Copper sulphides are readily oxidized to sulphates, and copper then released as Cu^{2+}. If Cu^{2+} is present in the ore, some of the cyanide may be oxidized to cyanate (CNO^{-}) in reducing combined Cu^{2+} to Cu^{1+}. For each two cupric ions reduced, one cyanide ion is converted to cyanate. Cyanide consumed in this way is not recoverable (Fairbridge, 1972).

Cuprous ion has a complete outer shell of 18 electrons and as such does not absorb radiation in solution. Cupric ion, however, has 17 electrons in its M-shell and can absorb radiation of suitable wavelength (3630, 7580 and 11900A), (Noblitt, 1973).

TABLE 2. 2. SOLUBILITY OF MINERALS IN CYANIDE SOLUTION

Main Element		Mineral	2 Dissolved in 24 hours
Gold	Calaverite	AuTe_{2}	Readily soluble
Silver	Argentite Cerargyrite	$\begin{gathered} \mathrm{Ag}_{2} \mathrm{~S} \\ \mathrm{AgCl}^{2} \end{gathered}$	Readily soluble Readily soluble
	Proustite	$\mathrm{Ag}_{3} \mathrm{AsS}_{3}$)Ruby	Sparingly soluble
	Pyrargyrite	$\mathrm{Ag}_{3} \mathrm{SbS}_{3}$) silver	Sparingly soluble
Copper	Azurite	$2 \mathrm{CuCO} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$	94.5
	Malachite	$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$	90.2
	Chalcocite	$\mathrm{Cu}_{2} \mathrm{~S}$	90.2
	Cuprite	$\mathrm{Cu}_{2} \mathrm{O}$	85.5
	Bornite	$\mathrm{FeS} \cdot 2 \mathrm{Cu}_{2} \mathrm{~S} \cdot \mathrm{CuS}$	70.0
	Enargite	$3 \mathrm{CuS} \cdot \mathrm{As}_{2} \mathrm{~S}_{5}$	65.8
	Tetrahedrite	$4 \mathrm{Cu}_{2} \mathrm{~S} \cdot \mathrm{Sb}_{2} \mathrm{~S}_{3}$	21.9
	Chrysocolla	CuSiO_{3}	11.8
	Chalcopyrite	CuFeS_{2}	5.6
Zinc	Smithsonite	ZnCO_{3}	40.2
	Zincite	2 n 0	35.2
	Hydrozincite	$3 \mathrm{ZnCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	35.1
	Franklinite	$\begin{gathered} (\mathrm{Fe}, \mathrm{Mn}, \\ \mathrm{Zn}) \mathrm{O}_{2} \cdot(\mathrm{Fe}, \\ \mathrm{Mn} \mathrm{O}_{3} \end{gathered}$	29.2
	Sphalerite	ZnS	18.4
	Gelamine	$\mathrm{H}_{2} \mathrm{Zn}_{2} \mathrm{SiO}_{4}$	13.4
	Willemite	$\mathrm{Zn}_{2} \mathrm{SiO}_{4}$	13.1
Iron	$\begin{aligned} & \text { Pyrrhotite } \\ & \text { Pyrite } \end{aligned}$	FeS or $\mathrm{Fe}_{5} \mathrm{~S}_{6}$ FeS_{2} (isometric)	Readily soluble Sparingly soluble
	Hematite	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	Sparingly soluble
	Magnetite	$\mathrm{Fe}_{3} \mathrm{O}_{4}$	Practically insoluble
	Siderite	FeCO_{3}	Readily soluble
	Marcasite	$\begin{aligned} & \mathrm{FeS}_{2} \\ & \text { (orthorhombic) } \end{aligned}$	Readily soluble

Source: R. Tremblay, 1983.
2.2.3 Zinc

Zinc occurs in a precious metal ore in a number of minerals smithsonite, ZnCO_{3}; sphalerite, ZnS ; willemite, $\mathrm{Zn}_{2} \mathrm{SiO}_{4}$; zincite, ZnO and several others. These zinc minerals are sufficiently soluble under normal cyanidation conditions. The reaction of cyanide with sphalerite for example (Ingles, 1981a), proceeds according to the equation:

$$
\mathrm{ZnS}+4 \mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Zn}(\mathrm{CN})_{4}+\mathrm{HS}^{-}+\mathrm{OH}^{-}
$$

In the presence of oxygen, sulphites and other intermediate products such as thiosulphate and thionates may be formed (Hedley and Tabachnick, 1958). Zinc forms complexes in aqueous solution but these are not particularly stable or inert (Fairbridge, 1972).

Sodium zinc cyanide is soluble in water (Hedley and Tabachnick, 1958) dissociating at any pH to some extent as follows:

$$
\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4} \not \ddagger 2 \mathrm{Na}^{+}+\mathrm{Zn}(\mathrm{CN})_{4}^{2-} \ddagger \mathrm{Zn}(\mathrm{CN})_{2}++2 \mathrm{CN}^{-}
$$

Another source of Zn in mill effluent is from the gold precipitation process. The amount of Zn dust used for the precipitation of precious metals depends to a large extent on the amount of precious metal in solution although other factors such as oxygen content, cyanide strength and alkalinity play an important part. During the reactions involved in precipitation, the greater part of the zinc
dissolves in the cyanide solution and forms various complexes such as sodium or calcium zinc cyanide, zinc cyanide, zinc thiocyanate and zinc ferrocyanide (Hedley and Tabachnick, 1958).

Zinc's chemical behaviour is dictated by the existence of a single oxidation state, i.e., Zn^{2+}. In a crystal zinc has the tendency to form covalent bonds which show a distinct preference for tetrahedral coordination. The octahedral coordination does not commonly occur. The Zn^{2+} ion is normally found with ferrous ion and apparently competes with it during fractionation for vacant octahedral lattice sites (Fairbridge, 1972).

2.2.4 Nickel

Nickel is most frequently found in certain varieties of the iron mineral pyrrhotite (3 to $5 \% \mathrm{Ni}$) or in combination with sulphur as millerite $N i S$. Although nickel can achieve oxidation states of $-1,0$, $+1,+3$ and +4 , the majority of the nickel compounds are of the $N i(I I)$ oxidation state.

The kinetics of formation and decomposition of the tetracyanonickelate (II) complex ion have been studied in some detall (Kolski and Margerum, 1968). The rate of formation is a fifth-order reaction, first-order in nickel and fourth-order in total cyanide; HCN is a reactant as well as CN^{-}. In the pH range 5.5 to 7.5 the rate is proportional to $\left[\mathrm{M}^{2+}\right]\left[\mathrm{CN}^{-}\right]^{2}[\mathrm{HCN}]^{2}$. By the use of iodine as a CN^{-}ion scavenger, the first-order rate constant for dissociation of the $\mathrm{Ni}(\mathrm{CN})_{4}^{2-}$ ion
at pH 3 to 8 in $\mu=0.1 \mathrm{NaClO}_{4}$ is estimated as $4.8 \times 10^{-4}\left(s^{-1}\right)$. The yellow $\mathrm{Ni}(\mathrm{CN})_{4}^{2-}$ ion (a square-planar complex) is both thermodynamically very stable and kinetically slow to release CN^{-}ion (Crouse and Margerum, 1974). Nickel is able to displace Zn and Cd from their cyanide complexes, forming the more stable tetracyanonickelate (II) complex (Broderius, 1973).

Nickel thiocyanate is also know to form. It is a yellow-brown hydrated solid that reacts with an excess of SCN^{-}to form complex ions $\mathrm{Ni}(\mathrm{SCN})_{4}^{2-}$ and $\mathrm{Ni}(\mathrm{SCN})_{6}^{4-}$ (Cotton and Wilkinson, 1962). A mixed cyano thiocyanato complex $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{CN})_{2}(\mathrm{SCN})_{2}\right]$ is obtained from nickel thiocyanate and potassium cyanide (nitrogen atom of the thiocyanate ion acts as ligand) (Sharpe, 1976).

The chemistry of nickel is not simple because of the existence of complex interconversions of various structures, i.e., octahedral, tetrahedral and square (Cotton and Wilkinson, 1962).

2.2.5 Iron

The principle sources of iron are the iron sulphide minerals: pyrite FeS_{2} (isometric), marcasite FeS_{2} (orthorhombic) and pyrrhotite $\mathrm{Fe}_{5} \mathrm{~S}_{6}$. Their reactivities increase in that order (Ingles, 1981b). Cyanide reacts with iron (II) and iron (III) to form extremely stable
 respectively. These reactions are slow and incomplete at high pH values (Caruso, 1975). Together these two complexes form an oxidation-reduction couple; ferrocyanide, which is the usual form in
solution at normal environmental oxidation potential levels, being fairly easily oxidized to ferricyanide (Ingles, 1981b). In addition to the difference in their stability constants (see Table 2.3), ferrocyanide forms an insoluble zinc salt while ferricyanide does not. Perhaps the best-known reaction of aqueous Fe^{3+} is with thiocyanate ion to form one or more intensely red coloured thiocyanate complexes.

The principal iron mineral of concern, pyrrhotite, is reported to react first via its labile sulphur atom to yield thiocyanate and ferrous sulphide:

$$
\mathrm{Fe}_{5} \mathrm{~S}_{6}+\mathrm{CN}^{-}+\mathrm{CNS}^{-}+5 \mathrm{FeS}
$$

The ferrous sulphide formed oxidizes rapidly to ferrous sulphate and the ferrous iron then combines with cyanide

$$
\begin{aligned}
& \mathrm{FeS}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}^{2+}+\mathrm{SO}_{4}^{2-} \\
& \mathrm{Fe}^{2+}+6 \mathrm{CN}^{-}+\mathrm{Fe}(\mathrm{CN})_{6}^{4-}
\end{aligned}
$$

These reactions will be competing, of course, with the hydrolysis-oxidation reactions leading to the precipitation of ferrous and ferric hydroxides (Ingles, 1981b).

$$
\mathrm{Fe}^{2+}+2 \mathrm{OH}^{-}+\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})
$$

$$
4 \mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})
$$

Metal		Compound	Solubility Product log Rsp	Cumulative Formation Constants				
				$\boldsymbol{\operatorname { l o g }} \mathrm{K}_{1}$	$\log \mathrm{K}_{2}$	$\log \mathrm{K}_{3}$	$10 \mathrm{~g} \mathrm{R}_{4}$	$\log \mathrm{K}_{6}$
Cadaium	II	$\mathrm{Cd}(\mathrm{CN})_{2}$	8.0	5.48	10.60	15.23	18.78	-
Cobalt	II	-	-	-	-	-	-	very large
Copper	I	Cu, CN	19.49	-	24.0	28.59	30.30	-
Gold	I	- .	-	-	38.3	-	-	-
Iron	II	-	-	-	-	-	-	35 (47)**
Iron	III	-	-	-	-	-	-	42 (52)
Mercury	I	$\mathrm{Hg}_{2}(\mathrm{CN})_{2}{ }^{*}$	39.3	-	-	-	-	-
Mercury	II	-	-	-	-	-	41.4	-
Nickel	II	$\begin{aligned} & \mathrm{Ni}_{2}(\mathrm{CN})_{4}^{+} \\ & \mathrm{Ni}^{+}+\mathrm{NI}(\mathrm{CN})_{4}^{2-} \end{aligned}$	8.71				22.0	-
silver	I	AB, CN	15.92	-	21.1	21.7	20.6	-
zinc	II	-	-	-	-	-	16.7	-

[^0]Chemically, there is no evidence that any definite hydroxide, $\mathrm{Fe}(\mathrm{OH})_{3}$ exists, and the red-brown precipitate commonly called ferric hydroxide is best described as hydrous ferric oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{n} \mathrm{H}_{2} \mathrm{O}$ (Cotton and Wilkinson, 1962).

2.3 Cyanide Chemistry

2.3.1 Free cyanide

Cyanide exists in water in several forms. The term "free cyanide" refers to a summation of the ionic form CN^{-}and the molecular form, hydrocyanic acid, HCN . The equilibrium between HCN and CN^{-}is pH dependent.

$$
\begin{equation*}
[\mathrm{HCN}]+\left[\mathrm{H}^{+}\right]+\left[\mathrm{CN}^{-}\right] \quad \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=4.36 \times \mathrm{x}{ }^{\circ}{ }^{10^{-10}}\left(\mathrm{at} 20^{\circ} \mathrm{C}\right) \tag{2.1}
\end{equation*}
$$

At the pH value of 9.36 (equal to the pKa) the concentration of HCN and CN^{-}ion are equal (Broderius, 1973). With an increase in pH of one pH unit there is a tenfold decrease in the $[H C N] /[C N]$ ratio. At lower pH values (pH 7.0) most cyanide exists as molecular HCN (99.5\%) (see Figure 2.2) which is the major toxic fora of cyanide. Molecular HCN has a relatively high vapour pressure (53.1 kPa at $10.2^{\circ} \mathrm{C}$), and therefore can readily be volatilized to the atmosphere, even from stagnant solutions.

The equilibrium constant K_{a} varies slightly with temperature. Extrapolating to a temperature more characteristic of northern

Figure 2.2 Belative Percentage of Bydrocyanic Acid and Cyanide Ion in Solution as a Function of pir

Canada or winter conditions in southern Canada, approximately 94% of free cyanide would be in the form of HCN at $4^{\circ} \mathrm{C}$ and pH 8.5 (Leduc et al., 1982).

Free cyanide in milling solutions may react with various forms of sulphur (polysulphide or thiosulphate) from pyrites and other mineral constituents to form thiocyanate (Luthy and Bruce, 1979).

$$
\begin{aligned}
& \mathrm{CN}^{-}+\mathrm{S}_{\mathrm{X}}^{2-}+[\mathrm{S}(\mathrm{X}-1)]^{2-}+\mathrm{SCN}^{-} \\
& \mathrm{CN}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{SO}_{3}^{2-}+\mathrm{SCN}^{-}
\end{aligned}
$$

In lower concentrations in the environment free cyanide will oxidize to cyanate, and this will degrade chemically to carbon dioxide and ammonia (Hendrickson and Diagnault, 1973).

$$
\mathrm{HCNO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+\mathrm{CO}_{2}
$$

This reaction can occur at $\mathrm{pH}^{\prime} \mathrm{s}$ up to 8.5 but is greatly accelerated at lower pH's (Hendrickson and Daignault, 1973).
2.3.2 Simple cyanides

Most of the cyanide used in gold milling is in the form of alkaline metal salts. They are simple cyanide compounds represented by
the formula $A(C N)_{X}$ where A can be alkali (sodium, potassium or ammonium) or metal, and x, the valence of A, represents the number of cyano groups present in the molecule.

The aqueous hydrolysis of simple cyanides has been examined by several investigators, e.g., Milne (1950a), Hyatt (1976) etc. Being the salts of a strong base (NaOH or KOH) and a weak acid (HCN) their dissolution in water results in the dissociation of the ionic lattice followed by the hydrolysis of the cyanide ion to form HCN :

$$
\begin{gather*}
\mathrm{NaCN} \rightarrow \mathrm{Na}^{+}+\mathrm{CN}^{-} \tag{2.2}\\
\mathrm{Na}^{+}+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O} \nrightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}+\mathrm{HCN} \tag{2.3}
\end{gather*}
$$

As the very weakly dissociated hydrocyanic acid permits little free hydrogen ions in solution, hydroxyl ion will predominate to produce an alkaline solution. The reduction of pH of these cyanide solutions will always lead to the preferential formation of undissociated HCN (Ecological Analysts Inc., 1979). Subsequent behaviour would then be the same as for HCN explained in Section 2.3.1 for free cyanide.
2.3.3 Complex cyanides
There are 28 elements found (Table 2.4) and more than 64
oxidation states of these elements which may form complex cyanides
(Ford-Smith, 1964). The stability of the complex cyanides varies
greatly from one element to another and from one oxidation state to
another (see Table 2.4). The complexes form in stepwise fashion, with
table 2.4. OXIDATION STATBS OF METALS FORMING CYANIDE COMPLEXES

M	M (0)	M (I)	M (II)	M (III)	M (IV)	M (V)	M (VI)	M(VII)
Ti(22)				Ti (III)				
V (23)			V(II)	V (III)	V(IV)			
Cr(24)	Cr (I)	Cr (II)	Cr (III)	Cr (IV)				
$\mathrm{Mn}(25$	Mn(0)	Mn (I)	Mn (II)	Mn(III)	Mn(IV)			
Fe (26)	$\mathrm{Fe}(\mathrm{I})$?	Fe (II)	Fe (III)					
Co(27)	$\mathrm{Co}(0)$	Co (I)	Co (II)	Co(III)	Co (IV)			
$\mathrm{Ni}(28)$	$\mathrm{Ni}(0)$	Ni (I)	Ni (II)					
$\mathrm{Cu}(29)$		$\mathrm{Cu}(\mathrm{I})$	Cu (II)					
Zn			Zn (II)					
Ge (32)					Ge (IV)			
Mo(42)			Mo(II)	Mo(III)	Mo(IV)	Mo(v)		
Tc(43)		Tc (I)			Tc (IV)			
$\mathrm{Ru}(44)$			$\mathrm{Ru}(\mathrm{II})$	Ru (III)				
Rh	$\mathrm{Rh}(0)$	$\mathrm{Rh}(\mathrm{I})$		Rh(III)				
Pd(46)	$\operatorname{Pd}(0)$	Pd(I)	Pd(II)					
$\mathrm{Ag}(47)$		$\mathrm{Ag}(\mathrm{I})$						
Cd(48)			Cd(II)					
W (74)					W(IV)	W(V)		
Re (75)	$\mathrm{Re}(0)$	Re (I)	Re (II)	Re (III)	Re (IV)	$\operatorname{Re}(\mathrm{V})$	Re (VI)	Re (VII)
Os(76)			Os(II)	Os(III)?			Os(VI)	
Ir (77)			Ir (II)	Ir (III)				
Pt(78)	$\mathrm{Pt}(0)$?	Pt(I) ?	Pt (II)	Pt (III)	Pt (IV)			
Au(79)		$\mathrm{Au}(\mathrm{I})$		Au(III)				
$\mathrm{Hg}(80)$			Hg (II)					
T1 (81)		T1 (I)		T1(III)				
$\mathrm{Pb}(82)$		Pb (II)						
Po(84)					Po(IV)?			
U(92)							U(VI)	

Source: Ford-Smith, 1964.
successively higher cyanide contents, as the cyanide ion concentration of the solution is increased.

Under certain conditions which are a function of such factors as pH , temperature, and total cyanide concentration, complex metallocyanides will dissociate in water. This dissociation generates a complex cyanide ion which may further dissociate to release cyanide ions. But many complex ions are, in general, more stable than their original compounds and hence the extent of their subsequent dissociations may be relatively small (Caruso, 1975). Although a simple equation may be written to describe the overall dissociation of a complex cyanide ion, such one-step reactions are rare.

The actual process usually involves a number of intermediate steps. To appreciate the quantitative effect of altering conditions on an equilibrium, all intermediate species need be considered from a kinetic point of view. Although one species could predominate at any given time, other species could also be present. Unfortunately, very little work has been done on the elucidation of all intermediate reactions of the metallo-cyanide species thus far and, hence, one must rely upon overall or cumulative dissociation or equilibrium constants for many complex fons (Leduc et al., 1982).

According to Broderius (1973) the extent to which a complex cyanide dissociates is of little importance in environmental systems; the important factor is the rate at which cyanide bound in the complex exchanges with free cyanide in solution as illustrated in Eq. 2.4:

The rate of exchange is independent of total cyanide concentration and is governed by the pH of the medium and perhaps light intensity. A decrease in pH increases the rate of exchange. Complex ions such as $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$, and $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$ exhibit slow exchange with cyanide, while complex ions such as $\mathrm{Ni}(\mathrm{CN})_{4}^{2-}, \mathrm{Cu}(\mathrm{CN})_{3}^{2-}$ and $\mathrm{Ag}(\mathrm{CN})_{2}$ exhibit immeasurably rapid exchange with cyanide (MacDiarmid and Hall, 1953). The thermodynamic stability of a complex should not necessarily be expected to show a relationship with its rate of exchange (Adamson et al., 1950).

Most of the tests carried out on metallo-cyanide complexes (Asperger, 1952; Doudoroff, 1956, etc.) revealed that irregardless of how stable the complexes are (e.g., iron or nickel cyanide complex), they must be regarded as delayed sources of free cyanide which will be released under specific conditions (UV irradiation or decreased $p H$). This free cyanide is then subject to various natural removal mechanisms.

Since the most common heavy metals present in mill tailing solutions are copper, zinc, nickel and iron, their chemistry will be discussed in detail in the following paragraphs.
a) Copper-Cyanide Complexes ($\mathrm{Cu}-\mathrm{CN}$)

High levels of copper are often found in cyanide-containing effluents. Common aqueous species include $\mathrm{Cu}(\mathrm{CN})_{2}^{1-}, \mathrm{Cu}(\mathrm{CN})_{3}^{2-}$ and $\mathrm{Cu}(\mathrm{CN})_{4}^{3-}$. Copper-cyanide complexes in solution undergo a moderate
degree of dissociation depending upon numerous factors such as: pH , temperature, dissolved oxygen concentration, initial cyanide concentration, etc. (Broderius, 1973; Caruso, 1975; Amax of Canada Ltd., 1980).

When a copper cyanide solution was prepared having the mole ratio $C N: C u=2.0$, equilibrium was established within two to three days. However, equilibrium was not attained at $\mathrm{CN}: \mathrm{Cu}$ mole ratios of 2.5 and 3.0 after an extended period (110 days). This finding was interpreted as a sign of the slow formation and dissociation of the $\mathrm{Cu}(\mathrm{CN})_{3}^{2-}$ complex in comparison with $\mathrm{Cu}(\mathrm{CN})_{2}^{1-}$ (Broderius, 1973).
b) Zinc-Cyanide Complexes (Zn-CN)

Zinc-cyanide is a complex that readily dissociates in an aqueous solution. In very dilute solutions, virtually complete dissociation of these complex ions is to be expected at any pH value (Broderius, 1973). The tetracyano-complex of zinc (II) may exist in highly concentrated process waters but is expected to dissociate readily during in-plant effluent treatment. The equilibrium constant $\left(K_{a}=1.3 \times 10^{-17}\right)$ indicates that the complex will almost totally dissociate upon effluent dilution (total cyanide concentration less than $0.3 \mathrm{mg} / \mathrm{L}$ as CN^{-}) and, therefore, will be a significant source of. free cyanide and metals (Doudoroff, 1976).
c) Nickel-Cyanide Complexes (Ni-CN)

For all practical purposes, the $\mathrm{Ni}(\mathrm{CN})_{5}^{3-}$ and $\mathrm{Ni}(\mathrm{CN})_{6}^{4-}$ species are only present at very high CN^{-}concentrations. In dilute nickelocyanide solutions in which the cyanide to nickel molar ratio is 4 to 1 ,
the $\mathrm{Ni}^{(\mathrm{CN})}{ }_{4}^{2-}$ ion is the only significant stable complex species (Penneman et al., 1962). The dissociation of nickel-cyanide complexes is very pH dependent. As the pH decreases, the dissociation of the $\mathrm{Ni}(\mathrm{CN}){ }_{4}^{2-}$ complex ion increases (Doudoroff, 1976). Broderius (1973) examined in detail the rates of dissociation and formation of the tetracyanonickelate (II) complex ion in solutions of varying total cyanide concentration and pH . He assumed that cyanonickelate (II) exists in equilibrium with cyanide and nickel ions:

$$
\begin{align*}
& \mathrm{Ni}(\mathrm{CN})_{4}^{2-} \neq \mathrm{Ni}^{2+}+4 \mathrm{CN}^{-} \tag{2.5}\\
& 4 \mathrm{CN}^{-}+4 \mathrm{H}^{+}+4 \mathrm{HCN}
\end{align*}
$$

and calculated the dissociation constant as $K_{D}=1.004 \pm$ 0.375×10^{-31}. He found that formation and dissociation of the complex are very slow; as much as ten days may be required to achieve dissociation equilibrium. Hence, Eq. (2.5) is actually the summation of several reactions, each with its own dissociation constant. He observed that the exposure of a dilute nickel-cyanide complex solution to bright sunlight does not result in any photodecomposition of the complex.

Long (1951) studied the exchange of nickel between tetracyanonickelate (II) ion and hydrated nickel ion. He noticed that at pH values ranging from 4 to 8 , the exchange is slow compared to the rate of precipitation of nickel cyanide. However, the exchange of labelled
cyanide between $\mathrm{Ni}(\mathrm{CN})_{4}^{2-}$ and aqueous cyanide is fast, being completed in 30 s at pH 6.5 to 10.5 .
d) Iron-Cyanide Complexes (Fe-CN)

Iron forms two complexes with cyanide, hexacyanoferrate (II) ion, $\mathrm{Fe}(\mathrm{CN})_{6}^{4-}$, usually referred to as ferrocyanide, and hexacyanoferrate (III) ion, $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$, commonly known as ferricyanide.

Potassium ferrocyanide and ferricyanide, the otherwise highly stable complexes, photodecompose when exposed to bright sunlight particularly in the presence of oxygen (Broderius, 1973). The actual decrease in the concentration of hexacyanoferrates in effluents due to photolysis will depend on the clarity of the effluent, the extent of contact between the effluent and the air, as well as the rate of air movement (rate of HCN removal) over the surface of the tailings pond (Ingles, 1981b).

Specific reports of studies on the natural degradation of pure hexacyanoferrates solutions, or of effluents containing high concentration levels of these compounds, are relatively rare. The works of Broderius (1973), Broderius and Smith (1980) and others, focussing on their photolytic decomposition, provide valuable and relevant background information. In their detailed and extensive studies on the rate and extent of photolysis of hexacyanoferrates (II) and (III) Broderius and Smith (1980) concluded that the maximum amounts of total cyanide that can be photochemically released as HCN from these complexes (each containing 6 mol $C N$) are 85 and 49\%, respectively, corresponding to 5 moles of $C N^{-}$for hexacyanoferrate (II), and 3 moles
of CN^{-}for hexacyanoferrate (III). They quote Balzani and Carassiti (1970) in stating that under prolonged irradiation of aerated and relatively concentrated hexacyanoferrate (II) and (III) solutions, $\mathrm{Fe}(\mathrm{OH})_{3}$ (in alkaline solutions) and Prussian Blue (in acid solutions) are formed. At the same time they support these authors' contention that the overall chemical changes and the reaction mechanisms for the photolysis of hexacyanoferrate complexes are not well defined.

The removal methods of iron-cyanide complex other than photolysis do not appear to have received much attention. One would anticipate, for example, that in an effluent containing a relatively high proportion of labile metal cyanide complexes (such as those of zinc or copper), the release of the metal ions resulting from a drop in pH would be accompanied by precipitation of the corresponding metal ferrocyanide (Ingles, 1981b).

Although apparently never investigated, it is possible that ferrocyanide could be adsorbed on constituents of the tailings solids. For example, Gaudin (1932) and Taggart (1945) have both indicated that soluble prussiates (hexacyanoferrates) tend to form relatively stable, insoluble, polar films of copper ferrocyanide or ferricyanide on copper sulphide particles.

Hendrickson and Daignault (1973) studied the use of heavy metal ions to precipitate hexacyanoferrates for removal by precipitation or centrifugation. The metal ions tested were $\mathrm{Fe}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}$ and Cd^{2+}. Copper and zinc were the most effective for precipitating hexacyanoferrate (II). Hexacyanoferrate (III) did not precipitate well by
itself. Ferrous iron gave 90% removal but the other metals only removed about 60\%. However, with both hexacyanoferrates present, precipitation of 99.5% or better in both forms was obtained with Fe^{2+}, Cd^{2+} and Cu^{2+}.
2.4 Removal of Cyanide by Natural Degradation

For the removal of cyanide from gold mill effluents, the oldest treatment practiced to date has been natural degradation.

The natural degradation process consists of impounding cyanide-bearing waste solutions in large shallow ponds, thus allowing the hydrogen cyanide to escape. Depending upon present cyanide species and physicochemical conditions, such interactions as hydrolysis, dissociation, volatilization, photodegradation, chemical and bacteriological oxidation, and precipitation-dissolution may be important. They are discussed in the following sections.

2.4.1 Volatilization

The rate of volatilization of $H C N$ from a pond is dependent on the pH value of the waste and on prevailing atmospheric conditions. In general, decreased pH , increased temperature, reduced liquid-depth to surface-area ratios and increased turbulence will accelerate volatilization.

Taking into consideration the fact that atmospheric conditions vary widely, and that the cyanide-containing gold mill wastewater is
strongly alkaline, it would be difficult, but not impossible, to predict the time necessary for complete removal of cyanide (Dodge and Reams, 1949).

Since the equilibrium reaction between HCN and CN^{-}is so pH dependent (Eq. 2.1) the presence of air and CO_{2} (air normally contains $300 \mathrm{~g} / \mathrm{m}^{3}$ of CO_{2}) will have an effect on the formation of HCN (Clevenger and Morgan, 1916). The pH will decrease as the absorption of carbon dioxide from the air occurs and carbonic acid is produced by hydrolysis:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}^{\star}
$$

Carbon dioxide will convert the hydroxide alkalinity as rapidly as it is formed to bicarbonate alkalinity. The reactions are:

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2} \mathrm{CO}_{3}^{\star} \rightarrow \mathrm{CaCO}_{3}++2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{CO}_{3}^{\star} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{CO}_{3}^{\star} \rightarrow 2 \mathrm{NaHCO}_{3} \\
&
\end{aligned}
$$

Due to the formation of the bicarbonate-carbonic acid buffer system, further decreases in pH below 8.3 will be relatively slow. However, at equi-molar concentrations of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and HCO_{3}^{-}the pH would be 6.5, and small changes in pH in this range (8.3 to 6.5) result in large changes in the $\mathrm{HCN} / \mathrm{CN}^{-}$ratio (Milne, 1950a) (see Figure 2.2).

The carbonic acid produced by dissolving CO_{2} from the air in the water will also furnish hydrogen ions necessary to the formation of hydrogen cyanide.

The pH value can be used as an indicator of the percentage of total cyanide which has been converted into hydrogen cyanide. The concentration of cyanide in solution determines the amount of volatile HCN produced and consequently the partial pressure of $H C N$ at the interface between the liquid and the surrounding gas. The partial pressure is related to the concentration of $H C N$ in the liquid by an equilibrium constant (H) called the Henry's Law constant (Dodge and Zabban, 1952). H may be independent of concentration in a very dilute solution and of total pressure, provided the latter is nearly atmospheric; however, it is affected by the temperature of the solution.

Hydrogen cyanide in solution will maintain an equilibrium with atmospheric $H C N$. In general the amount of contact required to bring two phases into equilibrium is dependent on the rate of mass transfer. The rate at which mass is transferred between phases (in this case gas and liquid) is controlled by the driving force for mass transfer, the resistance to mass transfer and the interfacial area between phases (Perry, 1976) according to:

$$
N_{A}=K_{L}\left(X-X_{i}\right)=K_{G}\left(Y_{i}-Y\right)
$$

where $N_{A}=$ mass transfer rate;
$K_{L}, K_{G}=$ liquid and gas phase mass transfer coefficients;
$X, Y=$ bulk liquid and gas mole fractions;
$X_{i}, Y_{i}=$ liquid and gas mole fractions at the interface.

Looking at the problem from the viewpoint of chemicalengineering unit operations, the objective to be achieved in the cyanide removal process, based upon release of cyanide as hydrogen cyanide would be to bring about intimate contact first between cyanide in the pond and atmospheric pollutants (such as CO_{2}) to decrease the pH and promote the formation of HCN in solution and then between the solution and air to volatilize HCN.

In batch operations, volatilization of cyanide may occur in two ways:
i) By keeping the solution stagnant, in which case the solution is exposed to the surrounding air and the volatile solute is allowed to escape into the atmosphere. As soon as the surface of the solution becomes depleted of $H C N$ the rate of removal of cyanide from the solution by volatilization becomes entirely dependent on the rate of the molecular diffusion of HCN (Palaty and Horokova-Jakubu, 1959; Lur'e and Panova, 1962).

When working with stagnant solutions wind effects and stratification have to be taken into consideration.

1i) By aerating the solution with a gas (usually air) which is introduced into the solution in fine bubbles. Even gentle aeration of alkaline cyanide wastes will increase the mass transfer rate and cause
a decrease of the pH of the solution by natural recarbonation with a concomitant shift of the $H C N / \mathrm{CN}^{-}$equilibrium to favour the formation and volatilization of $H C N$ (Doudoroff et al, 1966). The difference between the partial pressure of hydrogen cyanide (which is in equilibrium with the concentration of HCN in the solution) and that in the gas used for stripping is one of the factors determining the rate at which the hydrogen cyanide is stripped from the solution. Stripping can only occur if the former partial pressure is higher than the latter, and the rate increases as this difference increases (Dodge and Zabban, 1952).

In all the experiments to date carried out on aerated solutions, air was used as a stripping agent. This improved the contact between atmospheric CO_{2}, the alkaline compounds in solution and HCN , decreased the pH , enhanced hydrolysis and brought about loss of HCN (Lur'e and Panova, 1962).

2.4.2 Photodegradation

Photodegradation occurs naturally in any shallow pond or lagoon where light can penetrate. Factors such as light penetration, affected by turbidity, colour, depth and many other parameters, will determine the impact of photodegradation in a specific body of water. Factors which enhance photolysis also enhance $H C N$ removal. For example, water turbulence will enhance mixing and expose more metallo-cyanide complexes to sunlight. This will enhance volatilization of $H C N$ by increasing the exposed surface area and the rate of mass transfer
(Ecological Analysts Inc. 1979). Numerous metallo-cyanide complex ions are relatively stable in aqueous solution in the absence of ultraviolet and visible light. However, under certain conditions, photodecomposition, with subsequent release of cyanide ions, will occur.

Ultraviolet (UV) and visible radiation cause the decomposition of complex iron cyanides, especially in the presence of dissolved oxygen (Burdick and Lipschuetz, 1950). After prolonged irradiation, HCN is released from its iron-cyanide complex. Iron may precipitate in basic solution as ferrous hydroxide (a white precipitate), or as ferric ferro-cyanide (Prussian Blue) in acidic solutions (Broderius, 1973). The pH , temperature and cyanide concentration all have a varying affect on the photolysis reaction of both iron-cyanide complexes (ferro- and ferri-). The lower the concentration of the iron complex ion, the faster the rate of photodegradation (Broderius and Smith, 1980) .

The rate of volatilization of $H C N$ from the surface of waters containing iron-cyanide complexes subjected to photolysis was found to be approximately first order. Half-lives for hexacyanoferrate (II) solutions containing $100 \mu \mathrm{~g} / \mathrm{L} \mathrm{CN}$ of 50 and 18 min were observed for fall and summer mid-day conditions, respectively, for a lake surface in Minnesota. In comparable hexacyanoferrate (III) solutions, the mid-day half-life ranged from 160 min in late fall to a minimum of about 64 min In mid-summer (Broderius and Smith, 1980).
2.4.3 Chemical oxidation
Chemical oxidation of cyanide using different oxidizing agents is a commonly employed treatment method for cyanide-bearing wastewaters but little data are available on the chemical oxidation of free cyanide under natural conditions.

Cyanide can be oxidized to cyanate by ozone, which is produced in water from ultraviolet irradiation by sunlight. Once cyanate is formed it will not revert to free cyanide, but because of its extreme instability it will decompose to ammonium ion and carbon dioxide (Amex of Canada Ltd., 1980; Resnick et al., 1958; Hendrickson and Daignault, 1973).

It is thermodynamically possible to oxidize free cyanide with molecular oxygen to yield cyanate, but unless catalyzed the reaction is impracticably slow. For example, Cu , activated carbon, enzymes, photo-redox reaction or microorganisms can be used as catalysts. (Pol'kin and Krylova, 1979; Weber and Corapcioglu, 1981; Schmidt et a1., 1981).

2.4.4 Microbial oxidation
 Many microorganisms are resistant, or can induce resistance, to cyanide by degrading it to nontoxic products (Knowles, 1976). It has been shown, primarily through studies of biological wastewater treatment systems, that bacterial, fungal and algal species can convert cyanide under either aerobic or anaerobic conditions to carbon dioxide

and ammonia, nitrite or nitrate (Towill et al., 1978; Brunker, 1980; Ludzack and Schaffer, 1960).

The need for gradual acclimation of the system is usually stressed as well as an additional source of metabolic energy such as dextrose, glucose, etc. (Howe, 1965; Raef et al., 1977).

The fact that cyanide can be removed from various effluents by biological treatment has been confirmed on many occasions. Murphy and Nesbitt (1964) found that $2 / 3$ of the cyanide carbon used was incorporated into bacterial cellular material and $1 / 3$ was used for cell respiration. Kunz et al., (1978) still had doubts whether the removal is caused by bio-adsorption or by bio-oxidation.

Cyanate and thiocyanate can be broken down by bacteriological treatment. The products of decomposition are incoorporated into cellular constituents within the organism as either a nitrogen or carbon source or both. It has been proven that CNO^{-}was more difficult to treat biologically than CN^{-}and CNS^{-}and that the process is very sensitive to changes in pH and temperature (Ludzack and Schaffer, 1960).

The extent of microbial degradation of cyanide in mine tailings ponds is not well documented. Gold mill effluents are not only dominated by high concentrations of cyanide but they usually contain cyanate, ammonia, thiosalts, thiocyanate, and high concentrations of metallo-cyanide complexes which may not be amenable to bacterial attack as well as toxic chemicals such as heavy metals ($\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}, \mathrm{Fe}$). In addition, they are typically initially characterized by a high pH
(>10), low nutrient levels, low number of microorganisms and high concentration of suspended solids.

The initial loss of cyanide from the cyanide-containing wastes in these ponds has been attributed to volatilization because it was found to be too rapid for strictly biological activity (Ludzack et al., 1951; Tarzwell, 1955).

After a prolonged period of time (some ponds have retention times of one to two years) the degradation of free cyanide could be enhanced by some biodegradation because the stagnant solution in the pond is bound to accumulate some microorganisms from the air, soil or plants. In order to enhance the process, some researchers have suggested the enrichment of the effluent organic substances by growing water plants (e.g., bulrushes) and the introduction of organic carbon material (such as molasses), and the maximization of oxygen availability by aerating the pond (Ilyalemdinov et al., 1977).

2.4.5 Thiocyanate formation

Cyanide can react with polysulphides or thiosulphate to form thiocyanate. Both polysulphide and thiosulphate are oxidation products of sulphides which are abundant in minerals (Amax of Canada Ltd, 1980; Luthy and Bruce, 1979).

If both CN^{-}and CNS^{-}are present in solution, the metallocyanide complexes will exist in solution preferentially to the respective thiocyanate complexes because the formation constants for
metal-thiocyanide complexes tend to be much lower than the corresponding metal-cyanate complexes (Dean, 1973).

Many of the metal-thiocyanate complexes are insoluble, therefore, they will precipiate. This mechanism might play a role in the removal of Zn, Ni and Cu in effluent holding ponds (Schmidt et al., 1981).
2.4.6 Cyanide in soil

Some metal cyanides in gold mill effluents remain in solution, while others adsorb onto solids and settle from solution (IEC, 1979; Ingles, 1981a). Little information is available on the movement of either free or complex cyanides at low concentrations through soils or tailings (Renn, 1955).

An EPA laboratory study of cyanide movement in different soils (Alesii and Fuller, 1976) showed that some cyanides are quite immobile while others may be more mobile. Ferric ammonium hexacyanoferrate was apparently very immobile. Cyanide as $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$ and CN in water were found to be very mobile in soils. Cyanide as KCN in a natural landfill leachate was found to be less mobile. Soil properties such as low pH and percent free-iron oxide, and kaolin, chlorite, and gibbsite type clays, tend to increase the attenuation of cyanide in the three forms tested. High pH , presence of free CaCO_{3}, low clay content and the presence of montmorillonite clay tend to increase the mobility of the cyanide forms (Alesil and Fuller, 1976).

The movement of cyanide in soil is usually quite limited because it is either complexed by trace metals or metabolized by various microorganisms (Towill et al., 1978).

2.4.7 Conclusion

A review of the literature shows that cyanide in an aquatic environment is not persistent. Very little information is available in the literature on the fate of cyanide in gold mill tailings ponds.

In general, the oxidation of cyanide with atmospheric oxygen is possible but, unless catalyzed, the reaction is impracticably slow. If it comes in contact with some oxidizing agents (e.g., chlorine, ozone), cyanide may be oxidized to a harmless level, but these oxidizing agents are not at hand in any of the mine tailings ponds.

Microbial degradation of cyanide in mine tailings ponds is not well documented in the literature. Microorganisms can convert cyanide (up to $200 \mathrm{mg} / \mathrm{L}$) to CO_{2}, ammonia, nitrite and nitrate, in biological wastewater treatment systems, particularly if they are acclimatized to cyanide and there is an additional source of metabolic energy present. The possibility of microbial degradation in normally operated tailings ponds upon release of the mill effluent is remote because of the high levels of cyanide, heavy metals, pH and suspended solids, and the low number of microorganisms and low nutrient levels, found in the effluent. Therefore, microbial degradation cannot be considered as a removal mechanism during the initial period when natural degradation of
cyanide seems to be most rapid. After a prolonged period of time the number of microorganisms may increase, but their effect on cyanide will depend upon their ability to oxidize it and break down metal cyanide complexes.

The only information that is well documented is the ability of free cyanide to volatilize in an aquatic environment. Basically, most of the potential cyanide degradation or removal mechanisms apply to free cyanide. Thus, it is necessary that the metallo-cyanide complexes dissociate or break down to the metal and free cyanide components before cyanide removal from an aquatic system can occur. Regardless of its form, simple or complexed, cyanide has to be treated as a potential source of HCN. After the initial quantity of free cyanide is released from a solution, the remaining cyanide forms will be converted into HCN, the volatile form of cyanide, as a function of the specific conditions occurring, e.g., sunlight, increased temperature, decrease in pH , presence of air.

Based on the above considerations, the major focus of this research was concentrated on volatilization and the metallo-cyanide complex dissociation (metal cyanide decay) as most important mechanisms for the removal of cyanide from the gold mill tailings ponds, keeping in mind all the other possible mechanisms.

ANALYTICAL RETHODOLOGY
Cyanide terminology is defined in Appendix A and used consistently throughout this thesis. All chemical analyses for this project were carried out by the staff of the Laboratory Services Section at the Wastewater Technology Centre (WTC).

3.1 Cyanide Determinations

Samples taken during each experimental run were collected in polyethylene bottles, preserved with NaOH to a pH of 12 , stored at $4^{\circ} \mathrm{C}$ and analyzed at the earliest possible time. The samples from all the solutions, except the iron cyanide complex solutions, were analyzed for total cyanide by the picric acid method (Appendix B.1). The picric acid method recovers all cyanides in the solution except iron cyanides (Conn, 1981). In this method, reagents are added to the sample directly and a colour develops which is directly related to cyanide concentration. Although with standard solutions the method was found to be both accurate and precise to levels of approximately $0.2 \mathrm{mg} / \mathrm{L} \mathrm{CN}^{-}$ a concentration of $1 \mathrm{mg} / \mathrm{L}$ was adopted as a lower limit in this research for application of this method.

Below the $1 \mathrm{mg} / \mathrm{L}$ level the distillation method was applied (Appendix B.2). Iron-cyanide complex solutions were also analyzed by the distillation method.

A modified version of the conventional acid distillation technique, using hydrochloric acid and hydroxylamine hydrochloride as reagents at pH 2.0 is the more accurate analytical procedure for total cyanide than the picric acid method used at WTC (Conn, 1981). The cyanide measurements after distillation are either colorimetric or titrimetric, depending on the concentration of cyanide. The interlaboratory standard deviation was determined to be $0.01 \mathrm{mg} / \mathrm{L}$ at the $0.1 \mathrm{mg} / \mathrm{L}$ level for synthetic samples and $0.1 \mathrm{mg} / \mathrm{L}$ at the $2.6 \mathrm{mg} / \mathrm{L}$ level and $0.003 \mathrm{mg} / \mathrm{L}$ at the $0.030 \mathrm{mg} / \mathrm{L}$ level for four real samples.

The same distillation procedure is used for the determination of weak acid dissociable cyanides (all but iron-cyanides) except the reagents used in this case are an acetic acid - sodium acetate solution buffered at pH 4.5 and zinc acetate. The purpose of the zinc acetate is to prevent decomposition of any ferrocyanide present. Cyanide has been reported to be totally recovered from zinc and nickel complexes but only about 70\% recoverable from copper complexes and 30\% recoverable from cadmium complexes. No recovery is reported from ferro, ferri and cobalt complexes and thiocyanate is not an interference. The interlaboratory relative standard deviation on an actual effluent sample was determined to be 5.5% at a cyanide concentration of $2.5 \mathrm{mg} / \mathrm{L}$ CN^{-}.
3.2 Cyanate and Thiocyanate Determination
Cyanate hydrolyses to ammonia when heated at a low pH. This phenomenon is used in the cyanate determinations. The ammonia content
is measured before and after hydrolysis of cyanate using ammonia-selective electrodes. The cyanate results have, for a 10 mL aliquot, a detection limit of $0.3 \mathrm{mg} / \mathrm{L}$ with a $\pm 3 \%$ precision at $100 \mathrm{mg} / \mathrm{L}$.

Thiocyanate forms an intense red color with ferric ion at an acidic pH , which is suitable for colorimetric determination. The thiocyanate results have, for a 10 mL aliquot, a detection limit of $1 \mathrm{mg} / \mathrm{L}$. The precision, depending on the sample concentration, is as follows: $\pm 3.7 \%$ at $7 \mathrm{mg} / \mathrm{L}$; $\pm 0.6 \%$ at $35 \mathrm{mg} / \mathrm{L}$ and $\pm 0.8 \%$ at $70 \mathrm{mg} / \mathrm{L}$. More detailed descriptions of the methods are available in "Standard Methods" (APHA-AWWA-WPCF, 1980).

3.3 Metals Determination

Samples for the determination of metals were collected in acid washed polyethylene bottles preserved with nitric acid (pH ~2) and stored at $4^{\circ} \mathrm{C}$. All metal analyses were performed by atomic absorption (AA) flame analysis (APHA-AWWA-WPCF, 1980). The detection limits, working range and precision for the results obtained by AA are as follows:

	Detection Limits (mg/L)	
	0.01 ± 0.005	
Cu	0.01 ± 0.005	$0.01-10.0$
Zn	0.10 ± 0.02	$0.01-3.0$
N	0.10 ± 0.02	$0.10-10.0$
Fe		$0.10-7.0$

The precision varies with the sample concentration and its matrix. Precisions at the top end of the linear working ranges for Cu , Zn, Ni and Fe are: $\pm 1 \%, \pm 1 \%, \pm 3 \%$ and $\pm 3 \%$, respectively.

The review of the literature revealed that the processes of volatilization of $H C N$ from cyanide solution and the dissociation of metallo-cyanide complexes were dependent upon many factors, such as pH , temperature, ultraviolet irradiation, contact with air (aeration), initial cyanide concentration, metal content, depth of the solution, etc. In this research, the three factors that were considered to be the most important were selected: temperature, UV light and aeration. The effect of depth upon irradiation was taken into consideration later when $U V$ irradiation rate constant was calculated, and upon other factors was eliminated by having the solutions well mixed. The assumption was made that the pH effect on metallo-cyanide complexes was insignificant and only its effect on $\mathrm{HCN} / \mathrm{CN}^{-}$ratio was considered later in the modelling process.

The following sections explain how the temperature, UV light and concentration ranges used in this research were selected and present the results of the preliminary tests that were carried out in order to determine suitable pH and air flow levels for the experimental design.

[^1]selected to be representative of warmer conditions and was easily obtained as a set room temperature. The $4^{\circ} \mathrm{C}$ temperature was chosen to be representative of cold weather conditions at many Canadian gold mines and was also the lowest temperature that the equipment available in the laboratory (cold water bath) could handle.

Considering that iron commonly occurs in the mill effluents and that an iron-cyanide complex solution is photodegradable (see Section 2.4 .2), the effect of $U V$ irradiation had to be examined to reproduce the sunlight effect. Samples tested under UV light were exposed to an intensity of $2 \mathrm{~mW} / \mathrm{cm}^{2}$; this intensity of sunlight is typical of southern Ontario in summer for the 300 to 400 nm range (Shaw, 1983). Since the experiments were carried out in graduated cylinders made of 2 mm thick Pyrex glass, it filtered out all radiation below 300 nm (Table 4.1). The range of $U V$ irradiation from sunlight was reproduced with B-100A Black Ray Ultraviolet lamp (wavelength 366 nm) mounted 18 cm above the cylinder (Figure 4.1). The intensity was measured with a "B1ack Ray" Ultraviolet Meter, Model J-221, with absolute accuracy of $\pm 15 \%$ and a precision of $\pm 5 \%$.

In order to examine the effect of concentration, the fact that the quality of the actual mill effluent would depend on the type of ore available, the treatment used on that ore, and chemicals applied in the process has to be taken into consideration. It would be difficult to carry out laboratory experiments on one specific mill effluent and apply the findings to others. Therefore, it was decided to produce a

TARLE 4.1. APPROXDATE WAVEENGTH LIMITS FOR TRANSAISSIOA OF VARIOUS OPTICAL MATERLALS REAR ROOM TEAPERATURE

Material	Thickness, win	Approx. λ for cutoff, A
Window glass (standard)	1	3070
	3	3140
Optical (white crown) 8lass	10	3300
Pyrex (Corning 774)	1.8	3090
	1	2800
	2	2970

Source: Shaw, 1983.
"synthetic effluent", i.e., to emulate the general characteristics of an actual gold mill effluent and use this solution in the experiments performed under controlled laboratory conditions.

The important metals found in the mill effluent at the selected gold mine complexed about 17% of the cyanide present. Based on the large amount of data available on this effluent, the individual metals most often found in the mill effluent typically tied up: Cu about 4\%, $\mathrm{Zn} 8 \%$, $\mathrm{Ni} 2 \%$ and $\mathrm{Fe} 3 \%$ of the available total cyanide.

Therefore, the level of 17% was chosen (i.e., metal cyanide to total cyanide ratio of 0.17) for sodium cyanide and the selected single metallo-cyanide solutions, which were:
i) Sodium Tricyanocuprate $\mathrm{Na}_{2} \mathrm{Cu}(\mathrm{CN})_{3}$
ii) Sodium Tetracyanozincate $\quad \mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}$
iii) Sodium Tetracyanonickelate $\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$
iv) Potassium Hexacyanoferrate $\quad \mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$

The four particular metallo-cyanide complexes were selected for the following reasons:
i) Upon addition of cyanide in the cyanidation process, copper sulphides are readily oxidized to sulphates and Cu^{2+} is released. When cyanide is oxidized to cyanate, Cu^{2+} is reduced to Cu^{1+} (Fairbridge, 1972). Therefore, of all the complex ions formed, $\mathrm{Cu}(\mathrm{CN})_{3}^{2-}$ is considered the most probable to occur in the mill effluents (Hedley and Tobachnick, 1958).
ii) Zinc's chemical behaviour is dictated by the existence of a single oxidation state, i.e., Zn^{2+}. Zinc minerals are sufficiently
soluble under normal cyanidation conditions. Zinc forms complexes in aqueous solution but these are never particularly stable or inert (Fairbridge, 1972). During the reactions involved in gold precipitation, the greater part of the zinc dissolves in the cyanide solution and forms various complexes, the most common being $\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}$ (Hedley and Tobachnick, 1958).
iii) The chemistry of nickel is not simple because of the existence of the variety of its structures (octahedral, tetrahedral and square) (Cotton and Wilkinson, 1962). Although nickel can achieve various oxidation states (see Section 2.2.4) the majority of its compounds are of the $N(I I)$ oxidation state (Nriagu, 1980). Since the formation of tetracyanonickelate (II) complex is a very fast reaction (a fifth-order reaction) and this complex is considered to be thermodynamically very stable, this is the nickel-cyanide complex most likely to occur in the mill effluents (Kolski and Margerum, 1968).
iv) Cyanide reacts with iron (II) and iron (III) to form extremely stable ferro- and ferricyanide complexes, respectively (Broderius, 1973). The common form in the cyanidation process would be ferrocyanide but in an aquatic environment ferrocyanate would fairly easily oxidize to ferricyanide (Ingles, 1981b).

The simple sodium cyanide solution and these metallo-cyanide solutions were tested in anticipation that the results would assist in the interpretation of the data from more complex solutions.

For more complex solutions low and high mixes were tested. The "low mix" contained $200 \mathrm{mg} / \mathrm{L}$ of TCN , of which 17% was in a complex with
the four metals mentioned above according to their exact stoichiometric proportions. The "high mix" was oversaturated with the same number of metals, hence, it did not contain any free cyanide (calculations were performed assuming that 117% of available cyanide was complexed with these four metals).

In order to determine suitable conditions for the experimental design, several preliminary tests were carried out. The results were used to delineate the choice of buffer and pH level, and to examine the effects of aeration and CO_{2} on cyanide removal.
4.2 Selection of Buffer and pH Level

Objective - Molecular HCN and the cyanide ion CN^{-}(the free cyanide), exist in water in a definite relationship dependent upon the pH of the system (Eq. 2.1). Since the pH of cyanide solution changes when open to the atmosphere, a buffer has to be used in order to maintain the pH at the certain level. The objective of this experiment was to determine the type of buffer which could be used for the experiments with simple and metallo-cyanide complex solutions. The pH's that were considered were $7.0,9.0$ and 11.0 . From Figure 2.2 it can be seen that at pH 7.0 approximately 99.5% of the free cyanide in solution is present as HCN, about 64% at pH 9.0 and about 5% at pH of 11.

Conditions - For safety reasons all the experiments were performed in a fume hood. All the preliminary tests were carried out at room temperature $\left(20^{\circ} \mathrm{C}\right)$ and under fluorescent light. The conditions
of the test are presented in Table 4.2, and the setup used is illustrated in Figure 4.1. All cyanide solutions were made on the day of the experiment. The air flow rate used in this test was $1000 \mathrm{~cm}^{3} / \mathrm{min}$ (arbitrarily chosen).

Discussion - The results of the experiments are presented in Table 4.3. These show that at pH 7.0 the rate of reaction is the fastest and as the pH increases the reaction rate slows down substantially. There were some difficulties encountered in maintaining the pH at 11.0 . During the latter part of the tests (after about 17 h) NaOH had to be added intermittently to maintain the pH constant. Because of these difficulties the results of the second set of tests are not available.

The equation used to calculate buffering capacity for the phosphate buffer ($\mathrm{pKa}=7.2$) was

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{\left[\mathrm{HPO}_{4}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{PO}_{4}^{-}\right]} \quad \text { (Freiser and Fernando, 1963) }
$$

The calculated concentration of the phosphate buffer (see Table 4.2) had a sufficient buffering capacity to maintain the pH at the desired level of 7.0.
table 4.2. the test conditions for bench scale experiments

Apparatus (Fig. 4.1)	Graduate cylinder (2000 mL) ($\mathrm{As} *=47.78 \mathrm{~cm}^{2}$) pH meter Fritted glass diffuser $\left.\begin{array}{l}\text { Air flow meter } \\ \text { Glass impinger (water) }\end{array}\right\}$ for aerated samples,$~$ Glass impinger (1 NKOH) - used for CO_{2} trap UV lamp - used for conditions with UV light
Sample Source	2000 mL NaCN ($100 \mathrm{mg} / \mathrm{L}$ TCN**) $2000 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{Cu}(\mathrm{CN})_{3}(100 \mathrm{mg} / \mathrm{L} \mathrm{TCN})$
Buffers	For $\mathrm{pH} 7.0: 0.25 \mathrm{M} \mathrm{KH}_{2} \mathrm{PO}_{4}$ and $0.16 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$ For $\mathrm{pH} 9.0: 0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{BO}_{3}$ and 0.1 M NaOH For $\mathrm{pH} 11.0: 0.05 \mathrm{M} \mathrm{Na} \mathbf{N P O}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and 0.1 M NaOH
* Surface area. ** Total cyanide.	

Figure 4.1 The Setup for Bench Scale Rxperiments
table 4.3. the effect of pH ON THE RATE OF CYANIDE REMOVAL (CHOICE OF BUFFER)

Cyanide Solutions	pH 7.0 $0.25 \mathrm{M} \mathrm{K} \mathrm{H}_{2} \mathrm{PO}_{4}$ $0.16 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$		$\begin{aligned} & \mathrm{pH} 9.0 \\ & 0.1 \mathrm{M} \\ & \mathrm{H} \mathrm{H}_{3} \mathrm{BO}_{3} \\ & 0.1 \mathrm{M} \mathrm{NaOH} \end{aligned}$		$\begin{gathered} \mathrm{pH} 11.0 \\ 0.05 \mathrm{M} \mathrm{Na} 2 \mathrm{HPO}_{4} \\ 0.1 \mathrm{M} \mathrm{NaOH} \end{gathered}$	
	$\mathrm{k}_{\mathrm{v}}\left(\mathrm{h}^{-1}\right)$	$t_{1 / 2}(\mathrm{~h})$	$\mathrm{k}_{\mathrm{v}}\left(\mathrm{h}^{-1}\right)$	$\mathrm{t}_{1 / 2}(\mathrm{~h})$	$\mathrm{k}_{\mathrm{v}}\left(\mathrm{h}^{-1}\right)$	$\mathrm{t}_{1 / 2}(\mathrm{~h})$
NaCN	0.2493	2.8	0.0776	8.9	0.0155	48.8
	0.2512	2.8	0.0858	8.1	NA	NA
$\mathrm{Cu}-\mathrm{CN}$	0.0356	19.5	0.0035	197.8	0.0014	498.1
	0.0328	21.1	0.0020	340.7	NA	NA
NA - not available. k_{v} - volatilization rate constant calculated assuming first order reaction.						
${ }^{t_{1 / 2}}$ - half life.						

In order to check if the PO_{4}^{3-} ligand had any effect on the removal reaction of cyanide (i.e., if PO_{4}^{3-} was competing with CN^{-}for metals) parallel experiments were carried out using either phosphate buffer or 1.2 M HCl for pH control. The results are presented in Table 4.4 and they show the same rate of cyanide removal in both experiments.

Conclusion - Taking into consideration the ease of running the test at pH 7.0 and the fact that the rate of reaction was the fastest at that pH (Table 4.3), it was decided to run future tests at pH 7.0 . From the results presented in Table 4.4 the conclusion is that phosphate buffer had no effect on cyanide removal - same rates of reaction involving Cl^{-}and PO_{4}^{3-}.
4.3 The Effect of Aeration

Objective - To determine if the presence of air had any effect on cyanide removal rate and, if so, to decide on the air flow rate to be used in subsequent experiments.

Conditions - For consistency the same setup was used for the experiments with and without air addition (Table 4.2). In the experiments with air addition, two air flow rates were used: $100 \mathrm{~cm}^{3} / \mathrm{min}$ and $1000 \mathrm{~cm}^{3} / \mathrm{min}$.

Observations - Since the non-aerated samples were stagnant for the duration of the test, it was necessary to stir the solution before every sample was taken to avoid stratification effects. Cyanide concentrations in the layer closest to the surface always were lower

TABLE 4.4. EFFECTS OF Gl^{-}and PO_{4}^{3-} ON CYANIDE REMOVAL RATE

Cyanide Solutions		$k_{v}\left(h^{-1}\right)$	$t_{1 / 2}(h)$
NaCN	1.2 M HCl	0.2638	2.6
	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and HPO_{4}^{2-}	0.2512	2.8
$\mathrm{Na}_{2} \mathrm{Cu}(\mathrm{CN})_{3}$	1.2 M HCl	0.0101	68.6
	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$and HPO_{4}^{2-}	0.0112	62.0

than the average cyanide concentration. Hence, there was some inconsistency in the results obtained on non-aerated samples.

There was a disadvantage in using an air flow rate of $1000 \mathrm{~cm}^{3} /$ min under laboratory conditions. The sample splashed around and the evaporation was 5% over 24 h . Compared to this, the evaporation of 2% per 24 h in case of $100 \mathrm{~cm}^{3} / \mathrm{min}$ air flow was considerably lower, and in addition there were no problems with splashing during these tests.

Discussion

1) Air versus no air - From the results shown in Table 4.5 it is apparent that the presence of air had a definite effect on cyanide removal. Much longer times were required for cyanide removal from stagnant solutions.
ii) $1000 \mathrm{~cm}^{3} / \mathrm{min}$ versus $100 \mathrm{~cm}^{3} / \mathrm{min}$ - Cyanide from the solutions receiving the higher air flow rate was removed faster (about four times faster from NaCN and two times faster from $\mathrm{Cu}-\mathrm{CN}$ solution) than from the solution with $100 \mathrm{~cm}^{3} / \mathrm{min}$ of air.

Conclusions - The tests show that the presence and rate of availability of air have significant effects on the removal of cyanide. The only dilemma was whether air contributed only to stripping off cyanide from the solution, whether there was oxidation of cyanide going on, or a possible reaction with CO_{2} from the air. To determine if cyanide oxidation to cyanate (CNO^{-}) was occurring, chemical analyses were performed and in all the cases CNO^{-}concentrations were $<0.1 \mathrm{mg} / \mathrm{L}$. Therefore, it is assumed that at the applied air

TABLE 4.5. THE EFFECT OF AERATION

Cyanide Solutions	AIR				NO AIR	
	$1000\left(\mathrm{~cm}^{3} / \mathrm{min}\right)$		$100\left(\mathrm{~cm}^{3} / \mathrm{min}\right)$			
	$\stackrel{k_{v}}{\left(h^{-1}\right)}$	$\begin{aligned} & t_{1 / 2} \\ & (h) \end{aligned}$	$\underset{\left(h^{-1}\right)}{k_{v}}$	$\begin{aligned} & t_{1 / 2} \\ & (h) \end{aligned}$	$\begin{aligned} & \mathbf{k}_{\mathbf{v}} \\ & \left(h^{-1}\right) \end{aligned}$	$\begin{aligned} & t_{1 / 2} \\ & (\mathrm{~h}) \end{aligned}$
NaCN	0.2493	2.8	0.0686	10.1	0.0228	30.4
	0.2512	2.8	0.0597	11.6	0.0269	25.8
$\mathrm{Cu}-\mathrm{CN}$	0.0356	19.5	0.0211	32.8*	0.0033	210.0*
	0.0328	21.1	0.0402	17.2	0.0086	80.6

* Inconsistent result. Experiments were carried out at the pH of 7.0 .
flows and for the duration of these experiments (4 to 30 h) there was no CNO^{-}produced.
4.4 The CO_{2} Effect

Objective - To see if there was any effect from CO_{2} in the air, causing a decrease in pH in spite of the phosphate buffer present in the solution.

Conditions - The conditions of the test are described in Table 4.2. One solution was examined having a $\mathrm{CO}_{2} \operatorname{trap}(1 \mathrm{~N} K \mathrm{KO})$ on the air line, and the other solution was without CO_{2} trap. The length of test runs was 103.6 h .

Observations - The results from this test are presented in Table 4.6. After four days the pH in both solutions went through essentially the same change (i.e., decreased from 6.94 (6.92) to 6.86) indicating that there was a reduction of 1% in the pH under the applied conditions. Because the permitted change in the experiments was decided to be ± 0.5 at pH of $7.0(\pm 7 \%)$, this reduction was negligible.

Conclusion - Since the oxidation of cyanide to cyanate was not detected and there was a negligible effect of CO_{2} on the cyanide solution pH level for the duration of these experiments, the positive effect of aeration was attributed to agitation of the cyanide solution and the stripping off of free cyanide.
table 4.6. the bffect of CO_{2} ON the pH readings

	Experiment \#1 (without CO_{2} trap)	Experiment \#2 (with CO_{2} trap)
Time (h)	pH	pH
0.0	6.94	6.92
3.7	6.94	6.92
7.1	6.95	6.91
25.7	6.94	6.88
30.9	6.93	6.91
50.7	6.91	6.86
55.2	6.86	6.86
95.9	6.84	6.85
103.6	6.86	6.86

From the seven variables found in the literature to be affecting the process of natural degradation of cyanide (pH , temperature, UV light, contact with air, surface area versus depth of pond, initial cyanide concentration and metal content) only three, considered to be the most important factors, were selected to be examined under previously determined pH of 7.0. These are: UV light, aeration and temperature.
5.2 Full 2^{3} Factorial Design

A full 2^{3} factorial design was used for the three chosen variables to determine which variable had the highest effect on the rate of cyanide degradation. This design required 8 experimental runs to evaluate all combinations of two levels of each of the three variables (Box et al., 1978).

Table 5.1 shows the factorial design matrix $(k=3$ columns and $N=2^{k}$ rows) used for these experiments (a minus sign represents the low level and a plus sign the high level of each variable). The criteria used to determine the range for low and high levels was explained in Section 4.1.
table 5.1. factorial design matrix

Run No.	Variables		
	$\begin{gathered} \text { UV Light } \\ \left(\mathrm{mW} / \mathrm{cm}^{2}\right) \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{Alr}^{\mathrm{Air}} \\ \left(\mathrm{~cm}^{3} / \mathrm{min}\right) \\ \mathrm{B} \end{gathered}$	Temp. (${ }^{\circ} \mathrm{C}$) C
8	-	-	-
6	+	-	-
7	-	+	-
5	+	+	-
4	-	-	+
2	+	-	+
3	-	+	+
1	+	+	+
Experimental	UV light	Air	Temperature
Settings	+	- +	+
	02	$0 \quad 100$	420

5.3 Inspection of the Data

Upon completion of the experiments, plots of temporal changes in total cyanide concentrations in the single cyanide solutions were produced and visually examined. Two examples of these plots are given in Figures 5.1 and 5.2.

The resulting graphs show that the total cyanide concentration drastically decreased after 48 to 72 hours under all conditions. The decrease varied between 20 to 90% for the seven cyanide solutions examined (see Appendix C, Tables C.1 to C.14).

Sodium cyanide is a typical representative of water soluble simple cyanides. It will ionize rapidly and completely when dissolved in water to release $C N^{-}$and form $H C N$ and, is therefore, considered as free cyanide. Consequently, if volatile HCN was to be released from any of the solutions examined, it would be derived initially from NaCN, then from the metallo-cyanide complex solutions. Therefore, it was concluded that the initial decrease in cyanide concentration in metallo-cyanide solutions should be compared to the rate of decrease of cyanide in NaCN solution since it occurred relatively quickly as the free cyanide was volatilizing from the solutions.

After the common initial decrease of the first part of the curve, the slopes of the second part of the curves varied among different metals, as well as within individual metallo-cyanides under different experimental conditions. This was attributed to the different length of time necessary for the dissociation of these

Figure 5.1 Total Cyanide Degradation in Sodiua Cyanide Solution

Figure 5.2 Typical Results of Total Cyanide Degradation $\mathbf{I n} \mathbf{F e}, \mathbf{C u}, \mathbf{Z n}$ and Mi Cyanide Complex Solutions
metallo-cyanide complexes (Table 2.2), the release of CN^{-}ion and formation of the volatile HCN.
5.4 Rates of Reaction
5.4.1 General

The objective of every study of chemical reaction kinetics is the determination of the order of a reaction and the provision of one or more rate equations to adequately describe the reaction at hand. The rate of reaction and the algebra for describing it is obtained by observing the change of concentration of reactant as a function of time.

If the mechanism of a reaction is known it is usually possible to postulate a rate equation and, hence, the order of reaction. The mechanism is the sequence of elementary steps that describes how the final products are formed from the original reactants. The rates of the individual steps will normally differ from each other, and the rate of the overall reaction will be determined primarily by the slowest of the steps.
It has been found experimentally that reaction rates are
proportional to the concentrations of the reactants raised to an
appropriate power. Expressing this mathematically for the irreversible
reaction $a A+b B+c C+d D$ the rate is (Smith, 1981):

$$
\begin{equation*}
r_{A}=-\frac{d c_{A}}{d t}=k C_{A}^{\alpha} c_{B}^{B} \tag{5.1}
\end{equation*}
$$

α is the order of the reaction with respect to A and β is the order with respect to B. The proportionality constant k, called the reaction rate constant, is dependent on temperature and independent of concentration.
5.4.2 Rate calculations

The following first-order rate reaction was applied to both parts of the curve - the initial part caused by rapid volatilization of free cyanide (see Figures 5.1 and 5.2), and the second part representing the slow decrease of total cyanide concentration due to metal cyanide decay rate:

$$
\begin{equation*}
\frac{d C_{A}}{d t}=-k_{1} C_{A} \tag{5.2}
\end{equation*}
$$

If the initial concentration is $C_{A O}$, integration yields

$$
\begin{equation*}
\ln \frac{C_{A}}{C_{A 0}}=-k_{1} t \tag{5.3}
\end{equation*}
$$

This implies a linear relationship between $\ln C_{A} / C_{A o}$ and t.
In order to select the cut-off point between volatilization and metal cyanide decay, the break point on the curve, and determine the k value for both parts of the curve the computer program BACKRAT (Appendix D) was applied. In this program linear regression was carried out on every set of data from Time 0 to the end of the experiment and backwards from the last data point to Time C. The residual sum of squares (RSS) was calculated and its average value monitored. When the change in cyanide removal mechanisms occurs RSS value suddenly changes, and this point is considered to be the cut-off point. The same check was made on the results of the average residual sum of squares obtained using backwards regression.

When the cut-off point was determined, the k_{v} value (rate constant from 0 time to the cut-off point) was available from the same forward regression analysis. In order to determine the k_{1} value (the rate of reaction constant for the second part of the curve) the data set was analyzed by the RATE program (Appendix E). This program performs linear regression from the cut-off point to the end of the
data set. The values of $k^{\prime} s$ (the rate constants) determined this way had the units of $\left[h^{-1}\right]$.
5.5 Examination of the Factors Affecting Volatilization of Free Cyanide

The values of the volatilization mass transfer coefficients k_{v} (determined for all 7 solutions examined under 8 different conditions) tabulated in Appendix C (Tables C.l to C.14), were used to construct the dot diagrams given in Figures 5.3a,b,c. The diagrams show the general location of the volatilization mass transfer coefficient with respect to temperature (Figure 5.3a), UV light (Figure 5.3b) and air (Figure 5.3c).

The effect of temperature on the rate of volatilization of cyanide from all examined solutions was very pronounced (higher rates at $20^{\circ} \mathrm{C}$), particularly in the reactions with aeration present (Figure 5.3a). At $4^{\circ} \mathrm{C}$ the reaction was generally slow.

The energy of activation E, the minimum energy the reacting substances must have for the reaction to occur, was calculated for the NaCN solution using the semitheoretical relationship of Arrhenius for the specific rate constant (Perry, 1976):

$$
\begin{equation*}
k=A e^{-E / R T} \tag{5.4}
\end{equation*}
$$

Figure 5.3a Volatilization Mass Transfer Coefficient \mathbf{k}_{v} versus Temperature

Figure 5.3b Volatilization Mass Transfer Coefficient k versus DV Light

where A is the frequency factor, R is the gas constant ($R=$ $8.314 \mathrm{~J} /{ }^{\circ} \mathrm{K}$ mol), T is the absolute temperature $\left({ }^{\circ} \mathrm{K}\right)$ and E is the energy of activation of the reaction ($\mathrm{kJ} / \mathrm{mol}$). Taking the logarithms of Eq. 5.4, gives

$$
\begin{equation*}
\log k=\log A-\frac{E}{2.303 R T} \tag{5.5}
\end{equation*}
$$

Thus a plot of $\log k$ against $1 / T$ yields a slope that represents -E/2.303R. If the rate constants are available for only two temperatures, Eq. 5.5 is applied and when the two resulting expressions are subtracted from one another, the equation becomes (Perry, 1976):

$$
\begin{equation*}
\log \quad \frac{k_{2}}{k_{1}}=\frac{E}{2.303 R} \frac{T_{2}-T_{1}}{T_{1} T_{2}} \tag{5.6}
\end{equation*}
$$

In this research, the activation energy for NaCN was calculated by applying Eq. 5.6 , and using the rate constant values determined at $4^{\circ} \mathrm{C}$ $\left(T_{1}=277^{\circ} \mathrm{K}\right)$ and $20^{\circ} \mathrm{C}\left(\mathrm{T}_{2}=293^{\circ} \mathrm{K}\right)$, and solved for E the results were:

Conditions	E($\mathbf{k J} / \mathrm{mol})$
AIR - UV	21.4
NO AIR - UV	25.3
NO AIR - NO UV	70.5
NO UV	65.9

The E value is always positive, therefore, the rate constant always increases with temperature. A rough working guide that the rate constant is doubled for every increase of $10^{\circ} \mathrm{C}$ has often been applied. In practice E may range from 4.2 to $418.4 \mathrm{~kJ} / \mathrm{mol}$ or even wider and a $10^{\circ} \mathrm{C}$ change in temperature may lead to a smaller or greater factor than two in the rate constant (Perry, 1976). In the above case, for the temperature increase of $16^{\circ} \mathrm{C}(E=21$ to $25 \mathrm{~kJ} / \mathrm{mol})$ the factor was about 2 with UV light present, and a factor of about 5 was calculated with no UV applied ($E=66$ to $70 \mathrm{~kJ} / \mathrm{mol}$).

The effect of UV irradiation was evident on the k_{v} of iron cyanide and low mix (Figure 5.3b).

Considering the effect of aeration (Figure 5.3 c) the reaction rate was increased in most cases with the air being present, including NaCN .

The summarized results of the dot diagram analyses of factors affecting the volatilization rate of free cyanide from all cyanide solutions are presented in Table 5.2. The + and - signs in the table mean that the rate of volatilization was higher or lower, respectively, when the particular factor was present in the experiment.

5.6 Comparison of Volatilization Rates
 When the values for the volatilization rate constant k_{v} were determined for NaCN and for metallo-cyanide solutions (see Appendix C , Tables C.1 to C.14) it was possible to compare them and at the same time check if the rate of volatilization of HCN from single

TABLE 5.2. FACTORS AFFECTING THE RATE OF VOLATILIZATION OF FREE CYANIDE (RESULTS OF THE DOT DLAGRAM ANALYSES)

	Temp.	Air	UV
NaCN	+	+	-
$\mathrm{Cu}-\mathrm{CN}$	+	+	-
$\mathrm{Zn}-\mathrm{CN}$	+	+	-
$\mathrm{Ni}-\mathrm{CN}$	+	+	+
Fe -CN	+	+	+
Low Mix	+	+	
High Mix		+	

Abstract

metallo-cyanide solutions was within the 95% confidence limit of the volatilization rate of HCN from a solution of NaCN . The computer program VOLCONF (Appendix F) was used to do linear regression analyses and calculate the 95% confidence interval on the first part of the curve of all the data sets under the same condition, e.g., sodium cyanide is compared to $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe cyanide complex solutions under $20^{\circ} \mathrm{C}$, NO AIR, UV (example, Figure 5.4). The general observation was that the values were within the 95% confidence level. Therefore, the statement made previously (Section 5.3) that the first part of the curve was attributed to the volatilization of free cyanide from NaCN as well as from metallo-cyanide complex solutions is justified by these results.

6 ANALYSIS OF EXPERIMENTAL DESIGN
 6.1 Introduction

The importance of each factor is determined by calculating its effect on the reaction. The effect of any factor is the change in response Y produced by a change in the level of the factor. When a factor is examined at two levels only, the effect is simply the difference between the average response of all trials carried out at the first level of the factor and that of all trials at the second level.

The effects were examined in three ways. They are:

1) Calculated effects.
ii) Half normal probability plots.
iii) Backward elimination procedure.

The theory about three ways is described in the following sections:
(1) Calculated effects - In these experiments the estimates of the main effects and the two and three factor interactions (see Table 5.1) were calculated by taking the sum of products between the response elements Y and the corresponding elements of the column (i to k) and dividing this product by N/2 e.g.,

Effect $\left(1\right.$ to k) $=\frac{2}{N} \sum_{i=1}^{k} Y_{i}$
where $\{1$ to $k\}$ stands for the elements of the 1 to k columns and the summation is taken over all N products (Draper and Smith, 1966).
ii) Half normal probability plots - Each estimated effect has a variance defined as:

$$
\operatorname{Var}(\text { effect })=\left(x^{\prime} x\right)^{-1} \sigma^{2}
$$

where σ^{2} is the variance of the individual observations and x and $x^{\prime \prime}$ represent the design matrix and the transpose design matrix, respectively (Shaw, 1983).

No replicate runs were conducted because of the large number of experimental runs carried out (7 solutions times 8 conditions $=56$) and the length of time required for each run. Therefore, the σ^{2} value was determined by analyzing the half-normal probability plots. The value of the variance was estimated from the plots by considering the effects which lie close to the straight line joining the response points. The variables with effects that deviated most from the straight line are considered the most significant (Daniel, 1959). The confidence interval at the $\alpha / 2$ level of significance for the best estimated individual effect $\boldsymbol{\beta}_{\mathbf{1}}$ was calculated as:

$$
\hat{\beta}_{i} \pm t_{V}, \alpha / 2 \sqrt{\operatorname{Var}(\text { effect })}
$$

where v represents the degrees of freedom and $\alpha / 2=0.025$, i.e., a 5% level of significance.
iii) Backward elimination procedure - The backward elimination procedure (Draper and Smith, 1966) was used as another way of verifying the results by separating significant from non-significant variables. This method first performs a complete linear regression using all variables i.e., finds the least squares equation on all independent variables, $\hat{y}=f\left(x_{1}, x_{2}, x_{3}\right)$. In order to be able to eliminate the non-significant variables the contribution of each of the variables to the regression sum of squares is determined. The partial fest values, calculated for every variable treated as though each one were the last to enter the equation, provide a measure of these contributions. The lowest partial F test value (F_{L}) is always compared with a preselected significance level $\mathbf{F}_{\mathbf{0}}$. If $\mathbf{F}_{\mathbf{L}}$ is found to be less than $\mathbf{F}_{\mathbf{0}}$, the variable which gave rise to F_{L} is removed from consideration and the calculation carried out again, until all the variables that remain exceed the significance level F_{0}.

6.2 Results

i) Calculated effects - For metallo-cyanide single solutions and two mixes the response variables in the factorial design were the
reaction rate constants (k_{1} 's) (see Table 6.1), estimated as explained in Section 5.4.2, by using linear regression on the second portion of the curve which was attributed to metal cyanide decay.

The response variable for sodium cyanide solution was the reaction rate constant, k, estimated for the whole length of the curve, which was attributed to the removal of free cyanide (Table 6.1). Some variability was observed at the end of this degradation process (see the degradation curve in Figure 5.1 after 80 hours).

The main effects and the two and three factor interactions were determined by using Eq. 6.1 in the computer program FACT presented in the Appendix G.1 (example calculation in Appendix G.2). The values of the calculated effects are given in Table 6.2.

From the results in Table 6.2, temperature (C) seems to be the largest main effect in the majority of cases. The exceptions are Fe and low mix where UV light ("A") is the main effect.
ii) Half normal probability plots - To confirm the findings of the "calculated results", half normal probability plots were constructed using the values from Table 6.2. The effects were arranged in ascending order and plotted against $\mathrm{Pi}(\%)=100(i-1 / 2) / \mathrm{m}$ where i is order number and m is the total number of effects. The plots are given as Figures G.3.1 to G.3.7 in Appendix G.3. Typical plots are presented in Figure 6.1.

When the half normal probability plots were visually inspected the temperature seemed to be the main effect for $\mathrm{NaCN}, \mathrm{Zn}$ and Ni
table 6.1. reaction rate constant as the response variable

Test Code	Cyanide Solutions	Response Variables						
		Na	Cu	Zn	Ni	Fe	Low Mix	High Mix
I		0.0050	0.0033	0.0045	0.0027	0.0007	0.0046	0.0017
A		0.0139	0.0031	0.0096	0.0041	0.0040	0.0052	0.0011
B		0.0074	0.0038	0.0068	0.0030	0.0012	0.0046	0.0013
AB		0.0234	0.0036	0.0137	0.0042	0.0051	0.0087	0.0016
C		0.0238	0.0071	0.0194	0.0008	0.0026	0.0056	0.0025
AC		0.0253	0.0024	0.0181	0.0015	0.0222	0.0060	0.0022
BC		0.0394	0.0207	0.0062	0.0027	0.0016	0.0047	0.0026
ABC		0.0389	0.0153	0.0448	0.0008	0.0068	0.0075	0.0027

table 6.2. resuls of $\mathbf{2}^{3}$ factorial desicn in terms of relative effects

	Cyanide Solutions							
Factors*	Na	Cu	Zn	Ni	Fe	Low Mix	High Mix	
A	0.0057	-0.0025	0.0123	0.0003	0.0079	0.0019	-0.0001	
B	0.0088	0.0034	0.0049	0.0004	-0.0037	0.0010	0.0002	
C	0.0180	0.0078	0.0135	-0.0020	0.0055	0.0002	0.0011	
AB	0.0006	0.0032	0.0104	-0.0007	-0.0034	0.0015	0.0003	
AC	-0.0068	-0.0023	0.0063	-0.0009	0.0044	-0.0004	0.0000	
BC	0.0029	0.0029	0.0018	0.0002	-0.0045	-0.0007	0.0001	
ABC	-0.0031	0.0032	0.0095	-0.0006	-0.0038	-0.0003	-0.0001	

* A - UV light.

B - Aeration.
C - Temperature.
Single letters represent one factor effects and multiple letters represent interaction effects.

Figure $6.1 \begin{aligned} & \text { Half Nornal Probability Plots (} \mathrm{Cu}, \mathrm{Zn} \text {, } \\ & \text { Solutions) }\end{aligned}$
cyanide solutions and the high mix. Temperature combined with air, had some effect on Cu cyanide solution, while UV light combined with air affected the low mix. UV light showed a large effect on the iron cyanide solution and low mix. By taking the probability transform* as X and the effects that lie close to the straight line section as Y and applying a linear regression analyses, the estimates for the variances and the 95% confidence intervals on random effects were determined (Appendix G.4). Most factors found by visual inspection to have high effects, were proven significant at 95% CI. Only factors having an effect on zinc cyanide solutions were not significant at 95% significance level.
iii) Backward elimination procedure - The results of the backward elimination procedure are presented in Table 6.3. In order to carry out the backward elimination calculations the highest order interaction (three factor interaction) was taken as the estimate of error variance, due to the fact that there were no repeated runs in these experiments, and used for testing the significance of the other mean squares. The computer program LJUB7, using the backward elimination procedure as explained in Section 6.1, is applied and with the

[^2]table 6.3. COMPLETE RESULTS OF THE FULL 2^{3} FACTORIAL deSIGN

Type of Cyanide Solution	The Highest Calculated Effect	Half Normal Probability Plots		Results of Backward Elimination
		Results of the Visual Inspection	Significant Effects (95\% CI)	
NaCN	C	C	C	C
$\mathrm{Cu}-\mathrm{CN}$	C	C, B, BC	C, B, BC	C, B, BC
Zn -CN	C	C	-	C (non-signif.)
$\mathrm{Ni}-\mathrm{CN}$	C	C, BC	C	C
$\mathrm{Fe}-\mathrm{CN}$	A	A, C, AC	A, C, AC	A (non-signif.)
Low Mix	A	A, AB, B	$\mathrm{A}, \mathrm{AB}, \mathrm{B}$	$\mathrm{A}, \mathrm{AB}, \mathrm{B}$
High Mix	C	C	C	C
A - UV li B - Aerat C - Tempe	ht ature			

output of the example calculation, presented in the Appendix G.5. The calculations were carried out at one degree of freedom which affected the sensitivity of the F test, therefore, the results were considered slightly inferior to the methods outlined in Sections (i) and (ii).

The summarized results of the full 2^{3} factorial design are presented in Table 6.3.

The temperature (C) is the largest main effect for most solutions ($\mathrm{Na}, \mathrm{Cu}, \mathrm{Ni}$ and high mix cyanide), while UV light (A) is the largest main effect for $F e$ and low mix. There is some effect of temperature on zinc cyanide removal but it is not significant.
6.3 The Effect of Aeration on NaCN Degradation

To assess the effect of air, UV light and temperature on the removal of cyanide in NaCN solution it was assumed that the whole NaCN curve represented the removal of free cyanide. However, neither the effects of aeration nor UV light are significant for the NaCN solution at the 5% level. This lack of significance is somewhat surprising.

Therefore, the reaction rate constant for NaCN was recalculated assuming that a cut-off point existed. The linear regression was carried out forward and backward on every set of data. The average residual sum of squares (RSS) values were compared (see computer program BACKRAT in Appendix D explained in Section 5.4.2). There was no sudden, but a small gradual change in these values, hence there were some difficulties in estimating the cut-off point. In the case of
metallo-cyanide complex solutions, when there was a definite change in the cyanide removal mechanisms (from volatilization to metal cyanide decay), the sudden change in the average RSS values occurred.

The reaction rate constant k_{v} established for the first part of the curve did not differ significantly from estimates for the whole curve. When applied as the response variable for the estimation of the largest effects, the results presented in Table 6.4 were obtained.

These effects are arranged in ascending order (see Table 6.5) and a half normal probability plot prepared (Figure 6.2). The effects of temperature, air and their interaction were observed.

In order to check the significance of these effects the 95% confidence interval was calculated and it was found to be between -6.86×10^{-3} and 5.46×10^{-3}. Therefore the effects of temperature (C), air-temperature (BC) and air (B) were determined to be significant at the 95% confidence level (Figure 6.2).

This confirmed that the air played an important role in removal of free cyanide together with temperature within the first 48 to 72 hours.

The way the "second part" of the NaCN degradation curve can be explained is that with the decrease in the concentration of total cyanide the volatilization rate of $H C N$ in the aerated solutions decreases too and the variability in the data at the end of the experiment was noted. In the non-aerated samples the variability occurred too, probably due to a change in thickness of the cyanide concentration gradient with time.

TAKLE 6.4. THE RESPONSE VARIABLES AFD EFFECTS - MaCN

Test Code	Response $k_{v}\left(h^{-1}\right)$	Effects
I	0.0164	-
A	0.0193	-0.0018
B	0.0176	0.0169
AB	0.0159	-0.0004
AC	0.0263	0.0235
BC	0.0205	-0.0024
ABC	0.0597	0.0180

| TABLE 6.5.PROBABILITY
 (NaCN) | (Z) | AND | EFFECTS | ARRANGED | IN | ASCENDING | ORDER |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | -2.45 | -1.85 | -0.4 | 1.9 | 16.9 | 18.0 | 23.5 |
| Identity of effect | ac | a | ab | abc | b | bc | c |
| P $=100(i-1 / 2) / 7$ | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |

Figure 6.2 Half Formal Probability Plot for $\mathbf{k}_{\mathbf{*}}$ for MaCN

According to the results obtained from the experimental design, it was concluded that volatilization and metal cyanide decay are the two predominant mechanisms for cyanide removal from the synthetic solutions.

The results of the dot diagram analyses on the factors affecting volatilization of free cyanide suggest temperature as the main factor, followed by air and UV (see Table 5.2).

The experimental design results on the factors affecting the degradation of metal cyanide shows that the temperature is the largest main effect for all cyanide solutions except iron cyanide and the low mix (Table 6.3).

Such a strong influence of temperature on the reaction rates and the results of the calculations of the energy of activation for NaCN of 21 to $70 \mathrm{~kJ} / \mathrm{mol}$, suggest molecular diffusion and chemical reaction controlled processes.*

[^3]The reaction rate constants for the two predominant mechanisms for cyanide removal, and the important factors affecting these constants, will be taken into consideration for the development of a model.
7.1 Model Development

It is desirable to develop a mathematical model which is a fairly general expression of the mechanisms underlying a real process. The evidence found in the literature and the results obtained in this study suggest that this model should be based upon the following observations:

1. Metal cyanide complexes dissociate into metal and cyanide ions.
2. Cyanide ion, in a hydrolytic reaction with hydrogen from water, produces $H C N$ and is in equilibrium with it.
3. The dominant form of free cyanide at pH 7.0 is molecular HCN. Molecular HCN is the species that volatilizes.
4. Temperature influences the rate of the dissociation of all metallo-cyanides. UV irradiation may affect the dissociation for a few metals.
5. The only parameter that was measured in the experiments is total cyanide [TCN] ${ }_{0}$, which is the summation of all the different cyanides that exist in aqueous solution (i.e., $\left.\mathrm{TCN}=\mathrm{MCN}+\mathrm{CN}^{-}+\mathrm{HCN}\right)$.
6. HCN can oxidize chemically to cyanate. But measurements of cyanate made during the experimental runs showed that there was no CNO^{-}present, suggesting that chemical oxidation is not an important mechanism.

In order to develop a model for a single metallo-cyanide complex solution, each chemical species containing cyanide forms was considered as a separate component, as given in Figure 7.1.

The first component is the metal cyanide complex denoted as MCN, the second is the cyanide ion and the third is molecular HCN. If the second and third are taken together they represent free cyanide. Each arrow between the components represents a transformation of mass. The assumption was that one metal complex and free cyanide can explain the observed characteristics of cyanide loss from solution in the single metallo-cyanide solutions.

The coefficients k_{1}, k_{2}, k_{3} are the rate constants (h^{-1}); k_{v} is the volatilization (aeration) mass transfer coefficient (cm / h), while $k_{u v}$ is the additional effect upon k_{1} due to ultraviolet irradiation (h^{-1}). For a batch reactor, taking into consideration the law of conservation of mass, the mass balance equations for each compartment are:

$$
\begin{gather*}
\frac{d[M C N]}{d t} v=-k_{1}[M C N] V-k_{u v}[M C N] V \tag{7.1}\\
\frac{d\left[C N^{-}\right]}{d t} v=k_{1}[M C N] v+k_{u v}[M C N] v-k_{2}\left[C N^{-}\right] V+k_{3}[H C N] V \tag{7.2}
\end{gather*}
$$

$$
\begin{equation*}
\frac{d[\mathrm{HCN}]}{\mathrm{dt}} \mathrm{v}=\mathrm{k}_{2}\left[\mathrm{CN}^{-}\right] \mathrm{v}-\mathrm{k}_{3}[\mathrm{HCN}] \mathrm{V}+\mathrm{k}_{\mathrm{v}} \mathrm{As}\left(\mathrm{C}_{\mathrm{s}}-[\mathrm{HCN}]\right) \tag{7.3}
\end{equation*}
$$

The total cyanide is the sum of Equations 7.1, 7.2 and 7.3:

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{TCN}]}{\mathrm{dt}} \mathrm{v}=-\mathrm{k}_{\mathrm{v}} \mathrm{~A}_{\mathrm{s}}[\mathrm{HCN}] \tag{7.4}
\end{equation*}
$$

Here $A_{s}\left(\mathrm{~cm}^{2}\right)$ is the area of the air-water interface across which volatilization occurs, C_{5} is the saturation concentration of cyanide (mol/L) corresponding to the atmospheric partial pressure of cyanide (approximately equal to zero for natural conditions) and V is the reactor volume (cm^{3}).

Rearranging the equations yield:

- for metal cyanide

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{MCN}]}{\mathrm{dt}}=-\mathrm{k}_{1}[\mathrm{MCN}]-\mathrm{k}_{\mathrm{uv}}[\mathrm{MCN}] \tag{7.5}
\end{equation*}
$$

- for free cyanide (sum of CN^{-}and HCN)

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{FCN}]}{\mathrm{dt}}=\mathrm{k}_{1}[\mathrm{MCN}]+\mathrm{k}_{\mathrm{uv}}[\mathrm{MCN}]-\frac{\mathrm{k}_{\mathrm{v}}}{\mathrm{z}_{\mathrm{h}}}[\mathrm{HCN}] \tag{7.6}
\end{equation*}
$$

where $Z_{h}=V / A_{s}$. If the $U V$ irradiation effect is insignificant, $k_{u v}$ becomes zero.

Summing these two equations produces one for total cyanide

$$
\begin{equation*}
\frac{\mathrm{d}[\mathrm{TCN}]}{\mathrm{dt}}=-\frac{\mathrm{k}_{\mathrm{v}}}{\mathrm{Z}_{\mathrm{h}}}[\mathrm{HCN}] \tag{7.7}
\end{equation*}
$$

Hence the model is equaions 7.5, 7.6 and 7.7.
Evidently the controlling steps are the rate of volatilization of the HCN form and the rate of dissociation of the MCN. Since the kinetics of $H C N$ formation from CN^{-}and its dissociation to CN^{-}are fast (Eq. 2.1), it is not rate limiting. This allows one to treat HCN and CN^{-}as being constantly in equilibrium relative to other processes. The model thus derived represents a two compartment reaction-inseries model.
7.2 Parameter Estimation Method

The differential equations (7.5 to 7.7) were solved by numerical integration using the Runge-Kutta-Verner fifth and sixth order method (DVERK) available from the International Mathematical and Statistical Libraries Inc. for CYBER systems. This method uses given initial conditions and calculates the change of concentration over time for total, metal and free cyanides using ten-hour time increments.

To obtain the best estimates of the parameters for this model, an iterative, nonlinear least squares parameter estimation subroutine was used (GAUSHAUS*). It is based on Marquardt's method which combines the Gauss method (Taylor series) and the method of steepest descent (Meeter and Wolfe, 1965).

A starting estimate for the initial concentration of metal-cyanide $[\mathrm{MCN}]_{0}$ was calculated from the initial metal concentration and stoichiometric relationship of the particular complexes formed from dissociation of the stock salt namely: $\mathrm{Cu}(\mathrm{CN})_{3}^{2-}, \operatorname{Zn}(\mathrm{CN})_{4}^{2-}$, $\mathrm{Ni}(\mathrm{CN})_{4}^{2-}$, and $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$. The estimate for initial free cyanide concentration $[F C N]_{0}$ was obtained by subtracting $[\mathrm{MCN}]_{0}$ from the measured initial concentration of total cyanide, [TCN]. An example calculation is given in Appendix H.1.

In this case there were three parameters that needed to be estimated:the overall metal decay coefficient $\left(k_{1}+k_{u v}\right)$, the volatilization coefficient (k_{v}) and $[F C N]_{0}$. However, the UWHAUS parameter estimation procedure allows for estimation of the initial metal cyanide concentration. Treating initial metal and initial free cyanide concentrations as parameters to be estimated creates a fourparameter estimation problem which was first evaluated herein.

The results of the four parameter estimation problem are described in Section 8.1. Three and two parameter estimation problems

[^4]```
are also carried out in this study and the results are presented in
Sections 8.2 and 8.3, respectively. The parameters estimated by the
three parameter estimation model specifying the MCN/TCN ratio to be
equal to 0.17 are presented in Section 8.4.
 A verification study concentrates on the simulations of low
mixes (Section 9.1.1.) and attempts the simulations of high mixes
(Section 9.1.2). Model calibration was evaluated by carrying out
simulations on actual barren solutions (Section 9.2).
```


## 8 Evaldation of Single metallo-cyanide solutions - results and DISCUSSION

8.1 Four Parameter Estimation Model

A sample graph of the results obtained using four parameter estimation for a single metal cyanide solution, $\mathrm{Zn}-\mathrm{CN}$, is given in Figure 8.1. It appears that a good fit of the model to the data is obtained. This implies that, as postulated, volatilization of free cyanide controls the initial steep slope of the curve and that metal cyanide decay controls the lower part of the curve (the slower rate of degradation).

The estimated metal cyanide decay coefficients using four parameter estimation are presented in Table 8.1 with respect to temperature. There is some variability in these estimates. The calculated values of $R^{2}$, the multiple correlation coefficient, indicates that 93 to $99 \%$ of the total variability in the observed data is explained by the model (Eq. 7.5 to 7.7).

The estimated volatilization mass transfer coefficients $k_{v}$ are given in Table 8.2. In reviewing these results, it was noted that although most were quite close, between some of them there was a difference of two orders of magnitude. The extent of this range was difficult to accept. A possible explanation was that the metal


Pigure 8.1 Pour-Parameter Bstimation Model - Typical Pit of Predicted
Values to Observed Data (Zn-CN $20^{\circ} \mathrm{C}, \mathrm{AIR}$, UV)

TABLE 8.1. ESTIMATED METAL CYANIDE DEGAY COEFPICIENTS $k_{1}\left[h^{-1}\right]$ FOR SINGLE METALLO-CYANIDE SOLUTIONS (FOUR-PARAMETER ESTIMATION MODEL)

|  | AIR | UV | TEMPERATURE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k_{1}$ at $4^{\circ} \mathrm{C}$ | $\mathrm{R}^{2}$ [\%] | $k_{1}$ at $20^{\circ} \mathrm{C}$ | $\mathrm{R}^{2}$ [\%] |
| Cu |  |  |  |  |  |  |
|  | + | + | $4.7 \times 10^{-9}$ | 98 | $8.9 \times 10^{-3}$ | 99 |
|  | + | - | $1.0 \times 10^{-9}$ | 94 | $5.2 \times 10^{-3}$ | 98 |
|  | - | + | $5.8 \times 10^{-3}$ | 98 | $1.5 \times 10^{-9}$ * | 98 |
|  | - | - | $3.2 \times 10^{-3}$ | 99 | $1.4 \times 10^{-1} * *$ | 98 |
| Zn |  |  |  |  |  |  |
| , | + | + | $7.0 \times 10^{-2}$ | 94 | $1.8 \times 10^{-2 *}$ | 99 |
|  | + | - | $7.9 \times 10^{-3}$ | 96 | $5.7 \times 10^{-2}$ | 99 |
|  | - | + | $9.3 \times 10^{-3}$ | 98 | $7.9 \times 10^{-2}$ | 98 |
|  | - | - | $4.4 \times 10^{-3}$ | 98 | $6.5 \times 10^{-2}$ | 98 |
| Ni |  |  |  |  |  |  |
|  | + | + | $4.5 \times 10^{-9}$ | 98 | $1.1 \times 10^{-3}$ | 99 |
|  | + | - | $1.1 \times 10^{-3}$ | 94 | $3.6 \times 10^{-3}$ | 99 |
|  | - | + | $3.2 \times 10^{-3}$ | 96 | $1.1 \times 10^{-3}$ | 93 |
|  | - | - | $1.7 \times 10^{-3}$ | 96 | $4.2 \times 10^{-5}$ * | 99 |
| Fe |  |  |  |  |  |  |
|  | + | + | $5.9 \times 10^{-5}$ | 99 | $4.8 \times 10^{-3}$ | 99 |
|  | + | - | $5.6 \times 10^{-9}$ | 98 | $4.9 \times 10^{-3}$ | 98 |
|  | - | + | $4.9 \times 10^{-3}$ | 99 | $1.2 \times 10^{-2}$ | 99 |
|  | - | - | $8.6 \times 10^{-4}$ | 99 | $1.6 \times 10^{-3}$ | 99 |

* Inconsistencies because $k_{1}$ at $20^{\circ} \mathrm{C}$ is less than $k_{1}$ at $4^{\circ} \mathrm{C}$.
** Time of observation was too short to allow for adequate estimation of parameters.

TABLE 8.2. ESTIMATED VALUES OF FOLATILIZATION MASS TRANSFER COEFFICIENTS $k_{v}[\mathrm{c}=/ \mathrm{h}]$ (FOUR-PARAMETER ESTIMATION MODEL)

|  | AIR | UV | TEMPERATURE |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k_{v}$ at $4^{\circ} \mathrm{C}$ | $\mathbf{k}_{\mathbf{v}}$ at $20^{\circ} \mathrm{C}$ |
| Cu |  |  |  |  |
|  | $+$ | + | 0.56 | 139.12* |
|  | $+$ | - | 0.46 | 2.02 |
|  | - | $+$ | 7.85* | 0.55 |
|  | - | - | 2.85* | 0.53 |
| Zn |  |  |  |  |
|  | $+$ | $+$ | 0.74 | 0.08* |
|  | $+$ | - | 2.14 | 29.73* |
|  | - | $+$ | 1.66 | 0.74 |
|  | - | - | 0.75 | 0.70 |
| Ni |  |  |  |  |
|  | + | + | 0.55 | 2.97 |
|  | + | - | 0.91 | 0.77 |
|  | - | + | 1.78 | 0.74 |
|  | - | - | 1.11 | 3.33 |
| Fe |  |  |  |  |
|  | $+$ | + | 0.29 | 3.69 |
|  | + | - | 0.84 | 0.56 |
|  | - | + | 428.06* | 1.43 |
|  | - | - | 1.55 | 0.71 |

* Inconsistencies.
complexes, in a somewhat random fashion acted as surfactants and were able to change the mass transfer characteristics of the volatilization coefficient. This was judged not to be probable. Another possible explanation was that the parameter estimation procedure had difficulty resolving parameter values for certain experiments, due to large correlations between parameters.

In all the runs, even when the model fit appeared to be satisfactory, some parameters were moderately correlated. A very high negative correlation existed between several parameters (FCN, MCN and $k_{1}$ ) for data sets which were termed inconsistent in Table 8.1 (Example in Appendix H.2; program TST used for four-parameter estimation and the output showing correlation matrix element value of -0.99 ). This means that an increase in one parameter is accompanied with a decrease in the other and that a unique set of estimates is difficult to obtain.

Considering the fact that the temperature had such a strong effect on the cyanide removal kinetics, the sodium cyanide volatilization mass transfer coefficients, used for the $k_{v}$ initial values, were averaged for $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}\left(\mathrm{k}_{4}{ }^{\circ} \mathrm{C}=0.52 \mathrm{~cm} / \mathrm{h}\right.$ and $\left.\mathrm{k}_{20^{\circ} \mathrm{C}}=1.33 \mathrm{~cm} / \mathrm{h}\right)$ and the same four parameters (FCN, $M C N, k_{v}, k_{1}$ ) were reestimated. There was no noticeable improvement, in either the model fit within correlation matrix elements.

Another way of examining the estimated values is to compare the estimated ratio MCN/TCN from the four-parameter estimation model to the initially set ratio of 0.17 , i.e., based on how the solutions were
made. In 12 out of 32 cases, the $\mathrm{MCN} / \mathrm{TCN}$ ratio is greater than 0.17 (Table 8.3). For these experiments the estimated FCN concentration was much smaller than originally calculated (based upon stoichiometry of the single metal complex). The estimated MCN concentration was much greater and metal decay appears to be controlling the cyanide degradation processes most of the time. Despite some difficulties, the overall fit of the model to the data for most experiments was good.

### 8.2 Three-Parameter Estimation Model

Decreasing the number of parameters in a given model usually decreases the incidence of high correlation but can also decrease the ability of the model to accurately predict observed phenomena.

Metal decay coefficients ( $k_{1}$ ), and initial concentrations were reestimated for all four metals by fixing $k_{v}$ at the global average value* of all the volatilization coefficients, $k_{v}$ of $0.93(\mathrm{~cm} / \mathrm{h})$. This reduced the problem to a three-parameter estimation ( $\mathrm{FCN}_{0}$, $M_{0} N_{0}$ and $k_{1}$ ). Contrary to the other metals, the estimates for metal decay coefficients for Cu were more consistent in the three than in the four parameter estimation model (See Table 8.4).

[^5]table 8.3. metal cyanide to total cyanide ratio - four parameter ESTIMATION MODEL

| AIR | UV |  | MCN/TCN Ratio |  |  | MCN/TCN Ratio |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |  | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| + | + | Cu | 0.09 | 0.27 | Zn | 0.30 | 0.13 |
| + | - |  | 0.17 | 0.09 |  | 0.60* | 0.74* |
| - | + |  | 0.58* | 0.04 |  | 0.47* | 0.18 |
| - | - |  | 0.69* | 0.90* |  | 0.69* | 0.40* |
| + | + | Ni | 0.12 | 0.17 | Fe | 0.08 | 0.18 |
| + | - |  | 0.30 | 0.21 |  | 0.16 | 0.30 |
| - | + |  | 0.34* | 0.26 |  | 0.97* | 0.35* |
| - | - |  | 0.50* | 0.13 |  | 0.25 | 0.25 |

* The MCN/TCN ratio is greater than 0.17 .

TAKLE 8.4. THE ESTMATED METAL CKANIDE DEGAY COEFFICIETT $k_{1}\left[h^{-1}\right]$
TEMPERATURE

|  | AIR | UV | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| Cu |  |  |  |  |
|  | + | + | $0.6 \times 10^{-2}$ | $8.7 \times 10^{-8}$ * |
|  | + | - | $0.4 \times 10^{-2}$ | $0.2 \times 10^{+1}$ * |
|  | - | + | $0.2 \times 10^{-2}$ | $0.6 \times 10^{-2}$ |
|  | - | - | $0.2 \times 10^{-2}$ | $1.9 \times 10^{-2}$ |

* Inconsistency.

The problem common for the estimation with the overall average $\mathbf{k}_{\mathbf{v}}$ was that all the estimates for MCN (except for ten conditions out of 32) were substantially higher than the theoretical initial concentrations $[\mathrm{MCN}]_{0}$ (Tables 8.5 a and b ). The reason for this was that the volatilization coefficients were faster than the volatilization process in these experiments, forcing the model to treat the entire curve as one rate limiting process, metal decay, and thus the MCN concentrations appeared greater.

Typical model fits for these conditions are shown in Figures 8.2 and 8.3. For total cyanide in Figure 8.2, the model fits the data well; volatilization of free cyanide controls the initial portion of the curve while metal cyanide decay controls the plateau over a longer time period. The total cyanide in Figure 8.3 also shows a good fit, but the metal cyanide complex is estimated by the model to control the decay process over much more of the whole curve than is shown in Figure 8.2.

Additional analyses were performed with a three parameter estimation model on twelve data sets in which the four parameter estimation model gave a MCN/TCN ratio greater than 0.34 (Table 8.3). In these analyses a fixed stoichiometry of 0.17 was used and the three parameters to be estimated were initial free cyanide concentration and the two decay coefficients. There was apparent improvement. The estimated values for $\operatorname{FCN}$ and the metal decay coefficient were closer to the initial values and the correlation between all the parameters
thele 8.5n. three parmeter estmatiow model - ce and Za cramide at kr avernee


NC - estimetlon routine was nat converging.

- IMCNI lower than observed.



[^6]

Figure 8.2 Three-Paramater Estination Model - FCi $>\operatorname{MCH}$ (Ca $20^{\circ} \mathrm{C}$, w AIR, W)

decreased, e.g., the correlation between $F C N$ and $k_{1}$ decreased from 0.99 to 0.43 for Fe at $4^{\circ} \mathrm{C}$, NO AIR, UV.

One other problem was that for some experiments the time period of observations was too short. Accordingly, because the data base was not sufficiently extensive, the lower portion of the curve did not adequately define the values of the coefficients. For such curves, there was a high correlation between estimated parameters in both the four-parameter problem format and in the three-parameter format.

In a few experiments which ran sufficiently long, the total cyanide concentration plateaued at a non-zero value whereas the model predicted that the concentration should decrease to zero. It was hypothesized that an additional metallo-cyanide complex existed in these solutions whose decay characteristics were much slower than those of the first complex.

Consequently, it was decided to perform the three parameter estimation (three parameters being $M C N, k_{v}$ and $k_{1}$ ) with the volatilization mass transfer coefficient initial values equal to the value recorded for NaCN under each individual condition. This was possible since it was proven earlier that volatilization coefficients for metallo-cyanide complex solutions were within the $95 \%$ confidence interval of $k_{v}$ for $\mathrm{NaCN}\left(\mathrm{k}_{\mathrm{NaCN}}\right)$. The computer program was adjusted so that the first predicted TCN value was equal to the initial observed TCN concentration and initial MCN was estimated. This resulted in FCN
being equal to the difference between $T C N$ and $M C N$. The results of this estimation process are presented in Appendix H.3, Tables 1 to 4.

There were three incidents $\left(\mathrm{Cu} 20^{\circ} \mathrm{C}\right.$, NO AIR, NO UV; $\mathrm{Zn} 4^{\circ} \mathrm{C}$, AIR, UV; $\mathrm{Zn} 20^{\circ} \mathrm{C}$, NO AIR , UV) where the estimated MCN value was much greater than the theoretical metal cyanide concentration or was even greater than the observed TCN concentration. One experiment $\left(\mathrm{Cu} 20^{\circ} \mathrm{C}\right.$, NO AIR, NO UV) was extremely short in time, 169 hours. Only four data points were available to use for the calculation of the metal decay coefficient and this was not a large enough data base to define adequately the values of the parameters. The correlation between MCN and $k_{1}$ for $\mathrm{Cu}\left(\right.$ or $\mathrm{k}_{\mathrm{Cu}}$ ) was unity.

For Zn at $4^{\circ} \mathrm{C}$, AIR, UV the values of $\mathrm{k}_{1}$ and $\mathrm{k}_{\mathrm{v}}$ were very close ( 0.019 and $0.014 \mathrm{~h}^{-1}$, respectively) forcing the model to treat the entire curve as one process, and consequently giving too high an estimate for the MCN concentration and at the same time a negative value for the $F C N$ concentration (since $T C N=M C N+F C N$ ). As expected there was a high negative correlation of -0.94 between $k_{v}$ and $k_{1}$ for $\mathrm{Zn}\left(\right.$ or $\left.\mathrm{k}_{\mathrm{Zn}}\right)$.

In the third case, Zn at $20^{\circ} \mathrm{C}$, NO AIR, UV the same problem occurred, i.e., $k_{v}$ and $k_{1}$ values determined for $Z n$ were very close ( 0.021 and $0.018 \mathrm{~h}^{-1}$ respectively). In addition it was calculated that $93 \%$ of cyanide was removed during the volatilization process (from Time 0 to the cut-off point) and only $7 \%$ was due to metal decay (from the cut-off point to the end of the experiment). The observation time
for metal decay was only 150 h long, and the change in cyanide concentration was not significant enough to give a good estimate for the metal decay rate. The high correlation of 1.0 found between MCN and $\mathrm{k}_{\mathrm{Zn}}$ was not surprising.

The inability of the model to estimate adequate MCN concentration for these three cases was observed also when the values were plotted with their individual $95 \%$ confidence intervals, based on the linear hypothesis calculated by UWHAUS, Figure 8.3a and Appendix H.3, (Figures 1 to 3). The three conditions analyzed previously were characterized with very large confidence limits.

In spite of the difference between the original $\mathrm{MCN} / \mathrm{TCN}=0.17$ and the $\mathrm{MCN} / \mathrm{TCN}$ estimated values, ranging from 0.07 to 0.74 , the calculated multiple correlation coefficient, $\mathrm{R}^{2}$, indicated that 96 to 99\% of the total variability in the data was explained by the model (Appendix H.3, Tables 1 to 4).

Generally, the estimated values for the parameters in the three-parameter estimation model improved and resulted in a better model fit compared to the estimates and model fit in the four-parameter estimation model. The correlation between parameters generally stayed high in the case of copper and zinc and decreased for iron and nickel. The reason for this was that the $k_{v}$ and $k_{1}$ values determined for copper and zinc cyanide solutions were very close and that created a difficulty in estimating all the parameters.


Figure 8.3 a Three-Parameter Estination Model - Estinated man values with 952 Confidence Intervals - Cu.

More data which covered the complete range of variation would be the only way to significantly decouple the correlation among the parameters.

### 8.3 Two Parameter Estimation Model

By specifying the value of the volatilization mass transfer coefficient as equal to that estimated for NaCN solutions, and total cyanide concentration as equal to initial observed value, the only two parameters which need to be estimated are the metal decay coefficient and metal cyanide concentration. Free cyanide is thus equal to the difference between total cyanide and metal cyanide. The computer program used in two parameter estimation modelling is presented in the Appendix H. 4 (see TSTOL2).

In this estimation process, the correlation between these two parameters ( $k_{1}$ and $M C N$ ) decreased but the model fit was poorer. When the residual sum of squares (RSS) was compared between three and two parameter estimation problems the RSS in the two parameter estimation problem generally increased (Table 8.6).

The conclusion at the end of two parameter estimation modelling was that by decreasing the number of estimation parameters to two the ability of a model to predict them accurately also decreased substantially.

| MetalloCyanide Complex Solution |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO } \mathrm{UV} \end{gathered}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { NO UV } \end{aligned}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO } \mathrm{UV} \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { NO UV } \end{aligned}$ | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { UV } \end{gathered}$ | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { NO AIR } \\ \text { UV } \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & U V \end{aligned}$ | $\begin{aligned} & 4^{4^{\circ} \mathrm{C}} \\ & \text { NO AIR } \\ & \text { UV } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cu}-\mathrm{CN}$ | $\begin{aligned} & \text { Two PEM } \\ & \text { RSS } \times 10^{6} \end{aligned}$ | 2.8 | 1.3 | 1.1 | 2.6 | 16.3 | 2.3 | 2.2 | 10.6 |
|  | $\begin{aligned} & \text { Three PEM } \\ & \text { RSS } \times 10^{6} \end{aligned}$ | 0.98 | 0.97 | 1.1 | 0.43 | 0.65 | 1.6 | 1.8 | 0.72 |
| $\mathrm{Zn}-\mathrm{CN}$ | Two PEM RSS $\times 10^{6}$ Three PEM RSS $\times 10^{6}$ | 13.1 | 0.73 0.72 | 0.72 0.72 | 0.42 0.42 | 1.1 0.16 | 0.81 0.80 | 1.7 1.3 | 4.8 1.2 |
| M1-CN | Two PEM RSS $\times 10^{6}$ Three PEM RSS $\times 10^{6}$ | 0.49 0.49 | 39.5 0.37 | 2.4 0.32 | 1.8 1.2 | 8.6 0.08 | 1.1 1.0 | 1.6 | 10.7 1.6 |
| $\mathrm{Fe}-\mathrm{CN}$ | $\begin{aligned} & \text { Two PEM } \\ & \text { RSS } \times 10^{6} \\ & \text { Three }{ }^{\text {PEM }} \\ & \text { RSS } \times 10^{6} \end{aligned}$ | 2.2 1.3 | 0.36 0.28 | 1.4 0.86 | 6.7 0.21 | 8.6 0.02 | 0.62 0.42 | 0.33 0.26 | 0.64 0.64 |

### 8.4 Parameter Estimation with Fixed MCN/TCN Ratio

As indicated earlier all the metallo-cyanide synthetic solutions examined were made based on the calculated value of MCN/TCN $=0.17$, i.e., $17 \%$ of the available cyanide was in a complex with the metal(s) present. After completing four, three and two parameter estimation using the earlier defined model equations (7.5, 7.6 and 7.7), the three parameter estimation model seemed to give the best estimated values for all the parameters (MCN, $k_{v}$ and $k_{1}$ ) but there were some discrepancies from the original MCN/TCN ratio of 0.17 .

In order to see whether these estimated values were statistically different from the estimates obtained by presetting the MCN/TCN ratio to 0.17 , an extensive set of calculations were carried out. A series of different $M C N / T C N$ ratios were stipulated and used in the three parameter estimation problem for all four metals. MCN/TCN values used were $0.0425,0.085,0.17,0.34$ and 0.68 . These values represent lower, equal and higher values than the theoretical MCN/TCN value of 0.17.

The complete results from this estimation process are presented in Appendix H. 5 Tables 1 to 4, together with the example program "TSRATIO" used for the calculations. The residual sums of squares (RSS) were recorded for all estimation runs (the four metals under all eight experimental conditions). In 14 of 32 cases the $\mathrm{MCN} / \mathrm{TCN}=0.17$ had the lowest RSS. Only under two conditions at MCN/TCN<0.17, RSS were the lowest, and all the others with the minimum RSS (16 of 32)
happened to be with MCN/TCN>0.17 (Table 8.7). The RSS values were plotted versus the five MCN/TCN ratios (see Appendix H.5, Figures 1 to 4) to visualize better the minimum RSS conditions.

In order to determine the statistical significance in these results an $F$ test was performed between two models, one using the RSS at $M C N / T C N=0.17$, and the other for the $M C N / T C N$ ratio having the minimum RSS of all five ratios examined. The total sum of squares (TSS) values for both models are identical, as is the number of parameters and degrees of freedom for the RSS being compared.

The results of the $F$ test are given in Table 8.8. These $F$ tests performed on the individual conditions prove that only five conditions (5 out of 32 ) are significantly different from the MCN/TCN ratio of 0.17 . These conditions are mostly experimental data for which we have had estimation problems before: either too short experimental runs, or experiments with NO AIR where stratification probably occurred.

The general conclusion from these statistical tests is that the model fit obtained in 27 out of 32 conditions with the defined three parameter estimation model (using $k_{v}=k_{N a C N}$ ) was not significantly different ( $5 \%$ level of significance) from the fit made with the three parameter estimation model under preset MCN/TCN ratio of 0.17 . The values of the three parameters estimated for the different experiments at fixed MCN/TCN $=0.17$ are given in Table 8.9. Whenever there was a case where volatilization occurred extremely rapidly (e.g., as observed
table 8.7. number of mindmu rss values at the particular mcn/tcn Ratio

| Metallo- <br> Cyanide <br> Complex |  | MCN/TCN |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Solution | 0.0425 | 0.085 | 0.17 | 0.34 | 0.68 |
| $\mathrm{Cu}-\mathrm{CN}$ | - | 2 | 2 | 2 | 2 |
| $\mathrm{Zn}-\mathrm{CN}$ | - | - | 3 | 1 | 4 |
| $\mathrm{Ni}-\mathrm{CN}$ | - | - | 4 | 4 | - |
| $\mathrm{Fe}-\mathrm{CN}$ | - | - | 5 | 3 | - |
| Number of <br> cases with the <br> lowest RSS | 2 | 14 | 10 | 6 |  |

TAMES 8.8. WESNLTS OF THIS TEST


MA - not applicable because the ninimum RSS is at MCN/TCN - 0.17.

*     - ignificant difference.


| MetalloCyanide Complex Solution | Estinated Parametera | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { No UV } \end{gathered}$ | $20^{\circ} \mathrm{C}$ 150 AIR NO UV | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO } \mathrm{UV} \end{gathered}$ | $\begin{aligned} & 4^{4^{\circ} \mathrm{C}} \\ & \text { NO AIR } \\ & \text { NO UV } \end{aligned}$ | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \underset{\mathrm{AIR}}{\mathrm{UV}} \end{gathered}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { UV } \end{aligned}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \operatorname{AIR} \\ \mathrm{UV} \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { UV } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cu}-\mathrm{CN}$ | FCN (mol/L) | 0.0064 | 0.0069 | 0.0065 | 0.0062 | 0.0065 | 0.0067 | 0.0065 | 0.0059 |
|  | $\left.k{ }^{( } h^{-1}\right)$ | 0.0709 | 0.0148 | 0.0151 | 0.0147 | 0.1014* | 0.0196 | 0.0184 | 0.0168 |
|  | ${ }^{k_{C u}}\left(h^{-1}\right)$ | 0.0119 | 0.0741 | 0.49×10 ${ }^{-9}$ \% | $0.47 \times 10^{-9}$ ** | 0.0066 | 0.0042 | 0.0029 | $0.28 \times 10^{-9}$ ** |
| 2n-CM | FCN (mol/L) | 0.0056 | 0.0053 | 0.0062 | 0.0053 | 0.0063 | 0.0067 | 0.0067 | 0.0058 |
|  | $k_{v}\left(h^{-1}\right)$ | 0.1062* | 0.0192 | 0.0183 | 0.0069 | 0.0840 | 0.0222 | 0.0212 | 0.0242 |
|  | $k_{\chi_{n}}\left(h^{-1}\right)$ | 0.0280 | 0.0671 | 0.0032 | 0.0014 | 0.0219 | 0.0629 | 0.0622 | 0.0045 |
| (1-CN | PCN (mol/L) | 0.0070 | 0.0063 | 0.0066 | 0.0053 | 0.0064 | 0.0064 | 0.0067 | 0.0049 |
|  | $k_{v}\left(h^{-1}\right)$ | 0.0177 | 0.1045* | 0.0190 | 0.0153 | 0.0876 | 0.0196 | 0.0171 | 0.0192 |
|  | $k_{N 1}\left(h^{-1}\right)$ | $0.87 \times 10^{-3}$ | 0.0017 | $0.30 \times 10^{-9}$ ** | $0.63 \times 10^{-10_{\text {** }}}$ | 0.0012 | $0.39 \times 10^{-4 * *}$ | 0.0017 | $0.12 \times 10^{-9}$ ** |
| Pe-Cs | FCN (nol/L) | 0.0066 | 0.0063 | 0.0061 | 0.0040 | 0.0058 | 0.0059 | 0.0061 | 0.0056 |
|  | $k_{v}\left(h^{-1}\right)$ | 0.0140 | 0.0187 | 0.0249 | 0.0183 | 0.1142* | 0.0297 | 0.0098 | 0.0069 |
|  | $k_{\mathrm{Fe}}\left(\mathrm{h}^{-1}\right)$ | 0.0013 | $0.24 \times 10^{-9}$ * | $0.21 \times 10^{-3}$ | $0.89 \times 10^{-9}$ * | 0.0052 | 0.0078 | 0.0027 | 0.0014 |

[^7] and plateaved value of cyanide decay.
in Figures 5.1 and 5.2) the estimated value for the volatilization mass transfer coefficient was an order of magnitude higher than the value experimentally determined. On the other hand some metal decay coefficients are estimated to have extremely low values (in the range of $0.6 \times 10^{-4}$ to $0.6 \times 10^{-10}$ ); these low values generally occur when the metal decay rate plateaued for a substantial period of time (e.g. $N i$ ) or when the volatilization process dominates most of the curve or when the experimental data is too short to give an adequate definition of the metal decay rate.

The estimated values of the metal decay rate coefficient were plotted on dot diagrams with respect to the three factors: UV light, air and temperature (Appendix H.6, Figures 1 to 3). Temperature has an effect on the decay rate of all four metals. There is no observed effect of either $U V$ or air on nickel decay. There is some relationship between UV light and iron cyanide decay, and some relationship between air and copper cyanide decay.

When considering these results in connection with the actual cyanide-bearing solution in the tailings pond, the implication is that the worst condition for the degradation of cyanide is the cold weather, particularly ice covered ponds when the air and $U V$ in addition to temperature have a minimum effect on cyanide degradation.

The results of this modelling excerise have, therefore, proven to be very realistic and in agreement with the similar information that can be found stated in the literature (Ingles, 1981a).

```
Contrary to this, it can be concluded that the best conditions for cyanide degradation would be warm weather, high temperatures, sunshine and wind (or some other mechanical source of aeration, Freeman (1983)).
```


## 9 VERIFICATION STUDIES

9.1 Simulation on the Synthetic Mixes

The parameters estimated by the three parameter estimation model specifying MCN/TCN $=0.17$ were used to simulate the results from the low and high synthetic mix solutions.

As observed from the experimental and estimated values only temperature had a consistent effect on metal cyanide decay coefficients of all four metallo-cyanide solutions. Therefore the metal cyanide decay coefficients were averaged at $4^{\circ} \mathrm{C}$ and at $20^{\circ} \mathrm{C}$ and used in the simulations for the mixes (see Table 9.1). The parameter values that were judged as inconsistent were rejected before averaging the decay rates. The three criteria used to specify inconsistency were the following:
(i) The three values of $\mathrm{k}_{1}$ for $\mathrm{Cu}\left(\mathrm{k}_{\mathrm{Cu}}\right)$ at $4^{\circ} \mathrm{C}$ estimated as extremely low, would signify almost a zero rate of reaction, while in reality the reaction was still going on (cyanide removal over that period averaged about 24\%). Therefore, the assumption was that the more realistic value of $0.0029\left(h^{-1}\right)$ was more representative of ${ }^{k_{C u}}$ at $4^{\circ} \mathrm{C}$.
(ii) The value of $7.41 \times 10^{-2}\left(\mathrm{~h}^{-1}\right)$ for $\mathrm{k}_{\mathrm{Cu}}$ at $20^{\circ} \mathrm{C}$ was estimated as too high ( $\mathrm{k}_{\mathrm{Cu}}>\mathrm{k}_{\mathrm{v}}$ ) because the estimation routine

TABLE 9.1. ESTIMATED METAL DECAY COEFFICIENT VALUES $k_{1}\left(h^{-1}\right)$ at $\mathrm{MCN} / \mathrm{TCN}=0.17$ (AVERAGED WITH RESPECT TO TEAPERATURE)

| Metallo- <br> Cyanide <br> Complex <br> Solution | AIR | UV | $k_{1}$ at $4^{\circ} \mathrm{C}$ | $k_{1}$ at $20^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cu}-\mathrm{CN}$ | + | - | $0.49 \times 10^{-9}$ * | 0.0118 |
|  | - | - | $0.47 \times 10^{-9}$ * | 0.0741* |
|  | + | + | 0.00295 | 0.0066 |
|  | - | + | $0.28 \times 10^{-9}$ * | 0.0043 |
|  | Accepted Average $\overline{\mathrm{k}}_{\mathrm{Cu}}=\overline{0.00295}$ |  |  | 0.00753 |
| $\mathrm{Zn}-\mathrm{CN}$ | + | - | 0.0032 | 0.0280 |
|  | - | - | 0.0014 | 0.0671 |
|  | + | + | 0.0622 | 0.0219 |
|  | - | + | 0.0045 | 0.0629 |
|  | Accepted Average $\overline{\mathrm{k}}_{\mathrm{Zn}}=0.01783$ |  |  | 0.04496 |
| $\mathrm{Ni}-\mathrm{CN}$ | + | - | $0.30 \times 10^{-9}$ | 0.0009 |
|  | - | - | $0.63 \times 10^{-10}$ | 0.0017 |
|  | + | + | 0.0017 | 0.0012 |
|  | - | + | $0.12 \times 10^{-9}$ | $0.59 \times 10^{-4}$ |
|  | Accepted Average $\overline{\mathrm{k}}_{\mathrm{Ni}}=\overline{0.00044}$ |  |  | 0.00095 |
| Fe-CN | + | - | 0.0002 | 0.0013 |
|  | - | - | $0.89 \times 10^{-9}$ * | $0.24 \times 10^{-9}$ * |
|  | + | + | 0.0027 | 0.0052 |
|  | - | + | 0.0014 | 0.0077 |
|  | Accepted Average $\overline{\mathrm{k}}_{\mathrm{Fe}}=0.00143$ |  |  | 0.00473 |

[^8]did not have enough information due to the limited data base (total experimental time only 169 h ). Therefore, the other three $\mathrm{k}_{1}$ 's for Cu at $20^{\circ} \mathrm{C}$ (Table 9.1) were used to obtain the average $\mathrm{k}_{\mathrm{Cu}}$ at $20^{\circ} \mathrm{C}$.
(iii) The $\mathrm{k}_{1}$ for $\mathrm{Fe}\left(\mathrm{k}_{\mathrm{Fe}}\right)$ for two conditions had very low estimated values ( $10^{-9} \mathrm{~h}^{-1}$ ) and if they were included in the calculation for the average value they would change $k_{F e}$ drastically for the other six conditions, therefore they were also rejected as nonrepresentative.

The energy of activation was calculated using Eq. 5.6 for the average $k_{1}$ values at $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. The values obtained are listed in Table 9.2. The activation energy permits one to ascertain that values used for averaging are plausible and consistent with the idea that the activation energy for aqueous solution reactions are typically within a range of 10 to $100 \mathrm{~kJ} / \mathrm{mol*}$.

These energy of activation values are at the low end of such a scale. They seem to be on a border where diffusion control ends and chemical reaction control starts.

[^9]TABLE 9.2. ENERGY OF ACTIVATION FOR $k_{1}$ BETNEEN $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$

| Metallo-Cyanide <br> Complex Solution | Estimated $\mathrm{k}_{1}\left(\mathrm{~h}^{-1}\right)$ at |  | $\begin{gathered} \mathbf{E} \\ \mathbf{k J} / \mathrm{mol} \end{gathered}$ |
| :---: | :---: | :---: | :---: |
|  | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |  |
| Cu - CN | 0.00295 | 0.00753 | 39.4 |
| $\mathbf{z n}-\mathrm{CN}$ | 0.01783 | 0.04496 | 39.0 |
| Ni - CN | 0.00044 | 0.00095 | 33.0 |
| $\mathrm{Fe}-\mathrm{CN}$ | 0.00143 | 0.00473 | 50.4 |

### 9.1.1 Low mix

The values of all the initial parameters necessary to carry out the simulation on the low mix cyanide solution are presented in Table 9.3. An example calculation is given in Appendix I.1. An example calculation for the rate constant due to ultraviolet irradiation is presented in Appendix I. 2.

The initial metal cyanide concentration $[M C N]_{0}$ was calculated taking theoretical stoichiometry of cyanide complexes into consideration. The initial free cyanide concentration for all eight experimental conditions was calculated by subtracting $[M C N]_{0}$ from the measured $[\mathrm{TCN}]_{o}$ value.

A typical example for the low mix model fit simulation is presented in Figure 9.1 for the conditions of $20^{\circ} \mathrm{C}$, NO AIR, UV. The results of the model simulations on the low mix solutions under the other seven experimental conditions (Figures I.3.1 to I.3.7) and the sample program used for simulations are presented in Appendix I.3.

Predicted cyanide values are compared with observed values near the end of each low mix experiment in Table 9.4. Generally, the predicted $T C N$ values are close to the observed values with one exception which is the $4^{\circ} \mathrm{C}$, NO AIR, UV condition. The lack of agreement is obvious when the graph is inspected (Figure I.3.2, Appendix 1.3). In order to illustrate the difficulty that the model encountered, the experimental results of the degradation process of single metallocyanide solutions and the low mix (concentration versus time) under the
table 9.3. mittal paraikters usid for the modelo sinulation of thr low mix

| Paraneters | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { NO UV } \end{aligned}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $4^{\circ} \mathrm{C}$ NO AIR NO UV | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \mathbf{U V} \end{gathered}$ | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { No AIR } \\ \text { UV } \end{gathered}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { UV } \end{gathered}$ | $4^{\circ} \mathrm{C}$ No AIR UV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{FCN}=\mathrm{TH}$ (1) (mol/L) | 0.00638 | 0.00631 | 0.00615 | 0.00692 | 0.00592 | 0.00635 | 0.00631 | 0.00581 |
| MCN $=$ TH (2) (mol/L) |  |  |  | 0.0013 |  |  |  |  |
| $k_{v}=T H$ (3) $\left(h^{-1}\right)$ | 0.0394 | 0.0238 | 0.0074 | 0.0050 | 0.0389 | 0.0253 | 0.0234 | 0.0139 |
| $[\mathrm{Cu}-\mathrm{CN}]=\mathrm{TH}$ (4) (mol/L) |  |  |  | 0.00033 |  |  |  |  |
| [ $\mathrm{Zn}-\mathrm{CN}]=$ TH (5) (mol/L) |  |  |  | 0.00062 |  |  |  |  |
| $[\mathrm{NL}-\mathrm{CN}]=\mathrm{TH}$ (6) (mol/L) |  |  |  | 0.00014 |  |  |  |  |
| $[\mathrm{Fe}-\mathrm{CN}]=\mathrm{TH}$ (7) (mol/L) |  |  |  | 0.00022 |  |  |  |  |
| ${ }^{\mathbf{C u}} \mathbf{=}=\mathrm{TH}$ (8) ( $\mathrm{h}^{-1}$ ) | 0.00753 | 0.00753 | 0.00295 | 0.00295 | 0.00753 | 0.00753 | 0.00295 | 0.00295 |
| $k_{Z_{n}}=T H$ (9) ( $h^{-1}$ ) | 0.04496 | 0.04496 | 0.01783 | 0.01783 | 0.04496 | 0.04496 | 0.01783 | 0.01783 |
| $k_{\text {N1 }}=T H$ (10) ( $h^{-1}$ ) | 0.00095 | 0.00095 | 0.00044 | 0.00044 | 0.00095 | 0.00095 | 0.00044 | 0.00044 |
| $\mathrm{k}_{\mathrm{Fe}}=\mathrm{TH}$ (11) $\left(\mathrm{h}^{-1}\right)$ | 0.00473 | 0.00473 | 0.00143 | 0.00143 | 0.00473 | 0.00473 | 0.00143 | 0.00143 |
| $k_{\text {uv }}=T H$ (12) ( $h^{-1}$ ) | - | - | - | - | 0.00025 | 0.00025 | 0.00025 | 0.00025 |



Figure 9.1 Low Mix Simulation - $\mathbf{2 0}^{\boldsymbol{\circ}} \mathrm{C}$, HO AIR, UV

TABE 9.4. TOTAL CXANIDE VALUES (OBSERYED AD ESTMATED) FOR LOM MIX CTANTDE SOLUTIOT

| Observed TCN versus Predicted TCN |  |  | $20^{\circ} \mathrm{C}$ |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { NO } \mathrm{UV} \\ & \hline \end{aligned}$ | $20^{\circ} \mathrm{C}$ <br> AIR <br> UV | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { NO } \mathrm{AIR} \\ \mathrm{UV} \\ \hline \end{gathered}$ | $4^{\circ} \mathrm{C}$ <br> AIR <br> UV | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { VU } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Experimentally Observed Values | Exper. Time (h) | 312 | 312 | 317 | 312 | 306 | 306 | 288 | 264 |
|  | TCN exp. (mol/L) | 0.0004 | 0.0004 | 0.0015 | 0.0021 | 0.0001 | 0.0002 | 0.0004 | 0.0001 5* |
| Model Simulation Values | Simulated Time (h) | 310 | 310 | 320 | 310 | 310 | 310 | 290 | 260 |
|  | TCN predic. (mol/h) | 0.0002 | 0.0002 | 0.0012 | 0.0021 | 0.0002 | 0.0002 | 0.0004 | 0.00068 |

* Model estimation value considered more accurate than experimentally obtained value because of the discrepancies observed in this low mix experimental run.
same conditions were plotted on the same graph (Figure 9.2). The difference in the slope for the initial volatilization process is obvious. This is an extreme case, i.e., the volatilization process in the low mix happens so fast that it gives the definite indication that some of the assumed complexes do not form, instead that the free cyanide is released as soon as the process starts. This would explain a sudden decrease in total cyanide concentration for which the model could not account. Therefore, the low mix model simulation under $4^{\circ} \mathrm{C}$, NO AIR, UV condition was assumed correct and the experimental observation of the low mix under the same condition incorrect.

Under the three conditions: $4^{\circ} \mathrm{C}$, AIR, UV; $4^{\circ} \mathrm{C}$, NO AIR, NO UV and $20^{\circ} \mathrm{C}$, AIR, NO UV there seems to be a delay in the initial degradation of cyanide in the low mix. However, when compared to the range of variations observed in single solutions under these conditions, the "delay" was within the $95 \%$ confidence interval of the single solutions. Although this slowed down the process in the beginning, after 230 hours the concentration estimated by the model was similar to the observed values. Generally, it was observed that the conditions with NO $U V$ would require a longer reaction time than that allowed, in order to have the model fit the data better. This was not surprising, since UV light was found earlier to have an effect on the rate of degradation of the low mix.

In order to check if the model was within the $95 \%$ confidence level of the observed data, a "modified $F$ " test was used. According to


Figure 9.2 Total Cyanide Degradation - Single Metallo-Cyanide Complex Solutions and Low Mix Cyanide Solution ( $4^{\circ} \mathrm{C}$, No AIR, UV)

Bard (1974), it is possible to calculate the likelihood ratio test for two models with nonlinear coefficients by using the following simplified equation:

$$
\text { Modified } F \text { test }=\frac{\mathrm{L}_{(1)}}{\mathrm{L}_{(2)}}=\left(\frac{\text { Model }_{2} \text { RSS }}{\text { Model }_{1} \text { RSS }}\right)^{\frac{\mathrm{n}}{2}}
$$

In this case, Model ${ }_{1}$ is based on the mean; Model ${ }_{2}$ is the low mix simulation, while $n$ is the number of experiments. For $L_{(1)} / L_{(2)} \leqslant B$ hypothesis $H_{2}$ is accepted (Model 2 is correct), and for $L_{(1)} / L_{(2)} \geqslant A$ hypothesis $H_{1}$ is accepted (Model $1_{1}$ is correct), and if $A>L_{(1)} / L_{(2)}>B$ the experimentation should continue. The $A$ and $B$ constants are determined depending upon the confidence we desire to place on the results. If $\alpha=\beta=0.05$ the values of $A$ and $B$ are $A \approx \frac{1-\beta}{\alpha}=19$ and $B \approx \frac{\beta}{1-\alpha}=0.053$.

From the results of these calculations presented in Table 9.4a, the experiments under $20^{\circ} \mathrm{C}$, NO AIR, NO UV and $4^{\circ} \mathrm{C}, \mathrm{AIR}$, UV conditions should be continued ( $A>4.14$ and $A>1.69$ ) and for the condition of $20^{\circ} \mathrm{C}$, AIR, NO $\mathrm{UV}, \mathrm{Model}_{1}$ is correct. Therefore, for five of the eight test conditions, the model fits the data at the $95 \%$ confidence level (identified with two asterisks in Table 9.4a).

When the calculated values are compared to the standard $F$ test, only the model fits under two conditions $\left(20^{\circ} \mathrm{C}, \mathrm{AIR}\right.$, NO UV and $20^{\circ} \mathrm{C}$, NO AIR, NO UV) are not acceptable.

TABLE 9.4a. VERIFICATION OF THE LOW MIX MODEL STMILATION - STANDARD F TEST (5Z) VERSUS MODIFIED P TEST*

|  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { NO UV } \end{aligned}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { NO } \mathrm{AIR} \\ \text { NO UV } \end{gathered}$ | $20^{\circ} \mathrm{C}$ <br> AIR <br> UV | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { NO AIR } \\ \text { UV } \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { NO } \mathrm{AIR} \\ \text { UV } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{d}_{\mathrm{f}}$ | 13 | 14 | 18 | 17 | 12 | 12 | 4 | 8 |
| Model $1_{1}$ RSS | 1.034 | 0.867 | 0.053 | 0.145 | 2.542 | 0.707 | 0.356 | 5.158 |
| Model 2 RSS | 2.571 | 1.035 | 0.006 | 0.0002 | 0.735 | 0.273 | 0.432 | 0.066 |
| F Test | 2.57 | 2.50 | 2.23 | 2.27 | 2.27 | 2.69 | 6.39 | 3.44 |
| Modified <br> F Test | 926.5 | 4.14 | $1.6 \times 10^{-10}$ ** | $8.1 \times 10^{-29}$ ** | $1.7 \times 10^{-4}$ ** | $1.3 \times 10^{-3}$ ** | 1.69 | $3.4 \times 10^{-10}$ ** |

* "Modified $F$ Test" is a modified version of an $F$ test for the model with nonlinear coefficients See Ref. Y Bard, 1974. Chapter X.
** The model fits the data at the $95 \%$ confidence level.


### 9.1.2 High mix

The metal decay coefficients applied in the high mix model simulations were the same used for the low mix. These were the average values of the metal decay coefficients determined by the threeparameter estimation model carried out on the single metallo-cyanide complex solutions (preset MCN/TCN ratio of 0.17 ).

The initià values for cyanide concentrations in the high mix were obtained as explained in Appendix J.l (i) and (1i). Because the high mix cyanide solution contained an excess of metals, some adjustments in cyanide concentrations had to be made before the model simulation process. The adjustments made for the first model simulation consisted in reducing all MCN concentrations by 15 to $23.1 \%$ in order to reach $\mathrm{FCN}=0.0 \mathrm{~mol} / \mathrm{L}$. The initial values for all the parameters required for the simulation are presented in Table 9.5.

A typical example of the first model simulation and its fit are presented in Figure 9.3a. The model fit of Figure 9.3a is not satisfactory, throughout the whole domain. But final predictions for TCN were not too far from those observed (see Table 9.6). In this first simulation, either the original assumptions made were not warranted or the estimates of the metal decay coefficients made for the single metallo-cyanide solutions were not suitable for the high mix conditions.

A second set of model simulations on the high mix data were carried out after some adjustments were made on metallo-cyanide
table 9.5. the mitial parameter values por high mit ctanide solution (first smulation)

| $\begin{gathered} \text { (1) } \\ \text { High Mix } \\ \text { Simulation } \end{gathered}$ | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { NO } \mathrm{UV} \end{aligned}$ | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { No UV } \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \end{aligned}$ NO UV | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { UV } \end{gathered}$ | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { NO AIR } \\ \text { UV } \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { UV } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TCN=TH(1) (mol/L) | 0.0000 |  |  |  |  |  |  |  |
| MCN $=\mathbf{T C N}=\mathrm{TH}(2)$ | 0.0076 | 0.0075 | 0.0076 | 0.0076 | 0.0074 | 0.0073 | 0.0069 | 0.0074 |
| $k_{v}=\mathbf{T H}(3)\left(h^{-1}\right)$ | 0.0394 | 0.0238 | 0.0074 | 0.0050 | 0.0389 | 0.0253 | 0.0234 | 0.0139 |
| [ $\mathrm{Cu}-\mathrm{CN}$ ] $=$ TH(4) (mol/L) | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0019 | 0.0018 | 0.0019 |
| $\left[\mathrm{Zn}_{\mathrm{n}} \mathrm{CN}\right]=\mathrm{TH}(5)$ | 0.0036 | 0.0036 | 0.0036 | 0.0036 | 0.0035 | 0.0035 | 0.0033 | 0.0035 |
| [ $\mathrm{ML}-\mathrm{CN}$ ] $=\mathrm{TH}(6)$ | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 0.0007 | 0.0008 | 0.0007 | 0.0008 |
| [ $\mathrm{Pe}-\mathrm{CN}$ ] - TH(7) | 0.0013 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0012 | 0.0015 | 0.0012 |
| $k_{C u}=\mathrm{TH}(8)\left(\mathrm{h}^{-1}\right)$ | 0.0075 | 0.0075 | 0.0029 | 0.0029 | 0.0075 | 0.0075 | 0.0029 | 0.0029 |
| $\mathrm{k}_{\mathrm{za}}=\mathrm{TH}(9)$ | 0.0449 | 0.0449 | 0.0178 | 0.0178 | 0.0449 | 0.0449 | 0.0178 | 0.0178 |
| $k_{\text {N1 }}=\mathbf{T H}(10)$ | 0.0009 | 0.0009 | 0.0004 | 0.0004 | 0.0009 | 0.0009 | 0.0004 | 0.0004 |
| $\mathrm{k}_{\mathrm{Fe}}=\mathrm{TH}(11)$ | 0.0048 | 0.0048 | 0.0014 | 0.0014 | 0.0048 | 0.0048 | 0.0014 | 0.0014 |
| $\mathrm{k}_{\mathrm{uv}}=$ TH(12) | - | - | - | - | 0.0002 | 0.0002 | 0.0002 | 0.0002 |



Figure 9.3a High Mix - Pirst Simalation (4 ${ }^{\circ} \mathrm{C}$, NO AIR, NO UV)
tavis 9.6. total ctanide valdes, onsinvid and estinatid for high mix ctanide solution (two attbipts)

| High Mix Observed TCN ve Est. TCN |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { No UV } \end{gathered}$ | $20^{\circ} \mathrm{C}$ NO AIR NO UV | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { NO UV } \end{aligned}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \text { UV } \end{aligned}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { No AIR } \\ & \mathrm{UV} \end{aligned}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \text { UV } \end{aligned}$ | $4^{\circ} \mathrm{C}$ NO AIR UV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Experimentally observed values | Exper. |  |  |  |  |  |  |  |  |
|  | Time ( h ) | 266 | 266 | 312 | 306 | 306 | 306 | 312 | 317 |
|  | TCN exp. (mol/L) | 0.0015 | 0.0022 | 0.0032 | 0.0031 | 0.0013 | 0.0019 | 0.0026 | 0.0032 |
| Model oimulation | Simulated <br> time (h) <br> TCN predicted (mol/L) | 270 | 270 | 310 | 310 | 310 | 310 | 310 | 320 |
|  |  | 0.0014 | 0.0015 | 0.0035 | 0.0044 | 0.0012 | 0.0011 | 0.0021 | 0.0026 |
| Model ofmulation | Simulated <br> time (h) <br> TCN predicted (mol/L) | 270 | 270 | 310 | 310 | 310 | 310 | 310 | 320 |
|  |  | 0.0015 | 0.0016 | 0.0034 | 0.0041 | 0.0010 | 0.0013 | 0.0024 | 0.0025 |

concentrations (Appendix J.l(ii)). The adjustments involved reduction of Cu and Zn metal concentrations in a complex with cyanide. The values of all the initial parameters are presented in Table 9.7. The assumption in this case was that Cu and Zn cyanide complexes were easily dissociated and cyanide became available for volatilization or further complexation, while metals could precipitate, adsorb or complex again.

According to Figure 9.3 b cyanide was complexed again as part of a slow-decaying metallo-cyanide complex, because the model fit substantially improved in the metal decaying area. Model predictions agree much more closely with observations near the end of the experiments in this simulation (see Table 9.6 and Figure 9.3b).

The obvious observation concerning the high mix model fit in both Figures (9.3a and b) was that the model predicted a slower rate of volatilization and more rapid rate of metal decay than actually occurred. The problem in the volatilization area could be that the complexes assumed to be formed had not formed in the time available therefore, some free cyanide escaped initially, and once the cyanide did complex with the metals present, the decay rate slowed down. When dealing with a solution such as the high mix which has an excess of metals, the possible competition between metals and ligands $\left(\mathrm{CN}^{-}, \mathrm{OH}^{-}\right.$
 and $\mathrm{PO}_{4}$ ) has to be suspected, which in itself could slow down the complexation process. According to the program REDEQL2 (McDuff and Morel, 1974) used for finding the equilibrium compositions of complex
tande 9.7. this hintial paraister galues for high hix ctaitide solution (secom shanlation)

| (1i) <br> High Mix Simulation | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $20^{\circ} \mathrm{C}$ NO AIR NO UV | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO UV } \end{gathered}$ | $4^{\circ} \mathrm{C}$ No AIR NO UV | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ | $20^{\circ} \mathrm{C}$ <br> NO AIR UV | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { UV } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.0000 |  |  |  |  |  |  |  |
| MCN $=$ TCN $=\mathbf{T H}(2)$ | 0.0076 | 0.0075 | 0.0076 | 0.0076 | 0.0074 | 0.0073 | 0.0069 | 0.0074 |
| $k_{v}=T H(3)\left(h^{-1}\right)$ | 0.0394 | 0.0238 | 0.0074 | 0.0050 | 0.0389 | 0.0253 | 0.0234 | 0.0139 |
| [ $\mathrm{Cu}-\mathrm{CN}]=\mathrm{TH}(4)(\mathrm{mol} / \mathrm{L})$ | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0019 | 0.0014 | 0.0013 | 0.0019 |
| $[\mathrm{Zn}-\mathrm{CH}]=\mathrm{TH}(5)$ | 0.0037 | 0.0036 | 0.0037 | 0.0037 | 0.0035 | 0.0035 | 0.0032 | 0.0035 |
| [ $\mathrm{Ni}-\mathrm{CN}]=\mathrm{TH}(6)$ | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 | 0.0009 |
| $[\mathrm{Pe}-\mathrm{CN}]=\mathrm{TH}(7)$ | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.0015 |
| $k_{C u}{ }^{=T H(8)}\left(h^{-1}\right)$ | 0.0075 | 0.0075 | 0.0029 | 0.0029 | 0.0075 | 0.0075 | 0.0029 | 0.0029 |
| $k_{\text {Zn }}=$ TH(9) | 0.0449 | 0.0449 | 0.0178 | 0.0178 | 0.0449 | 0.0449 | 0.0178 | 0.0178 |
| $k_{\text {Hi }}=\mathrm{TH}(10)$ | 0.0009 | 0.0009 | 0.0004 | 0.0004 | 0.0009 | 0.0009 | 0.0004 | 0.0004 |
| $\mathbf{k}_{\mathrm{Fe}^{\prime}} \mathbf{~ T H}(11)$ | 0.0048 | 0.0048 | 0.0014 | 0.0014 | 0.0048 | 0.0048 | 0.0014 | 0.0014 |
| $k_{u v}=$ TH(12) | - | - | - | - | 0.0002 | 0.0002 | 0.0002 | 0.0002 |



Figure 9．3b $\mathrm{High}_{\mathrm{gh}} \mathrm{Mix}$－Second Simiation（ $4^{\circ} \mathrm{C}$ ，NO AIR，NO UV）
aqueous systems, assuming equilibrium in this system at pH 7.0 , zinc can be found in solid form with a $\mathrm{PO}_{4}^{3-}$ ligand.

The general conclusion from the simulation attempts on high mix is that the estimated $k_{1}$ values for the single metallo-cyanide solutions are suitable for the mixes relatively low in metal concentration but when it comes to the solutions oversaturated with metals, the metal decay coefficient values may need reevaluation.
9.2 Evaluation of Model Calibration with Barren Solutions
9.2.1 Introduction

Three barren solutions were obtained from the well known gold mines in Canada. The apparatus used for these experiments was the same as the one used for synthetic solutions (Figure 4.1). Experiments were conducted under what was considered to be the best conditions for the natural degradation of cyanide to occur under a controlled environment, i.e., $20^{\circ} \mathrm{C}$, AIR and UV.

The initial cyanide and metal concentrations in all three barren solutions were compared to the final concentrations recorded at the end of the experiment (see Table 9.8). It was difficult to compare values obtained after different times of observation, ( 968 h vs 1320 h ) but since the concentrations of metals were not available during the experiments, only at the beginning and the end, these values had to be sufficient.

## 

| Barren Solutions | $\begin{gathered} \mathrm{TCN} \\ (\mathrm{mg} / L) \end{gathered}$ |  | $\begin{gathered} \operatorname{cu} \\ (\operatorname{mg} / L) \end{gathered}$ |  | $\begin{gathered} 2 n \\ (\sim 8 / L) \end{gathered}$ |  | $\begin{gathered} N 1 \\ (m g / L) \end{gathered}$ |  | $\begin{gathered} \mathrm{Fe} \\ (m g / \mathrm{C}) \end{gathered}$ |  | ph |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  | 1 | F | 1 | F | 1 | F | 1 | F | I | F | 1 | F |
| $\\| 1\left(t_{F}-1320 n\right)$ | 143 | 2.3 | 7.8 | 7.8 | 31 | 21(0.37) | 1.5 | 1.5 | 0.1 | 0.1 | 11.5 | 8.2 |
| /2 ( $t_{\mathrm{F}}=1320 \mathrm{~h}$ ) | 295 | 7.2 | 15.0 | 13.0 | 131 | 128(0.24) | 0.7 | 0.6 | 5.7 | 3.3(0.1) | 12.0 | 9.0 |
| 13 ( $t_{\text {F }}=968 \mathrm{~h}$ ) | 128 | 6.3 | 7.7 | 2.4(2.3) | 1.1 | . 1 | 0.5 | 0.1 | 10.0 | 0.6 (0.5) | 11.6 | 8.0 |

Falues in parenthesis are metal concentrations in a filtered sample. All other metal values are total concentrationa.

- Initial time.
- Final tine.

Zinc and copper were the metals with the highest concentrations common for \#l and \#2 barren solutions, while the \#3 barren had the highest concentration of iron, followed by copper.

The cyanide removal in all of them was $>95 \%$. The concentration of metals generally decreased (all except $N 1$ ). It is suspected that with a change of pH from a high of 11.0 to 9.0 or 8.0 , the metals precipitated in the form of hydroxides or were adsorbed on the walls of the container.
9.2.2 Simulations with the original $k_{1}$ values

At this point it was considered that the only differences between the barrens and synthetic solutions, were the cyanide and metal contents, and the pH of the solutions. From that aspect two adjustments had to be made to the model. The first adjustment (Appendix J.2) involved the assumption that barren solutions only contained the same metallo-cyanide complexes as the synthetic solutions. The theoretical stoichiometry for each complex was used in the calculations for $[M C N]_{0}$, which was subtracted from the analytically determined $[T C N]_{0}$ in order to obtain $[F C N]_{0}$. Since the model equations were derived for synthetic solutions at pH 7.0 , the effects of pH on the volatilization of $H C N$ had to be taken into consideration when modelling barren solutions. Hence the appropriate adjustments made on the model based on the equilibrium equation between $H C N$ and $C N$ were explained in

Appendix J3. The calculated values of all initial parameters required for the model simulation are presented in Table 9.9.

The results of the model simulation on barren solutions were very similar to the results of high mix simulation. The model volatilized cyanide too slowly and decayed metal cyanide too quickly (Figures 9.4, 9.6a and 9.7a). The reason for this may be the original assumption that the pH effect on metallo-cyanide complexes is insignificant and that only pH effect on HCN and $\mathrm{CN}^{-}$ratio is important. From another viewpoint, if metal cyanide in barren solution was simply dissociating, as assumed, and releasing $\mathrm{CN}^{-}$, the high pH would prevent formation of $H C N$. The released $\mathrm{CN}^{-}$ion may complex with other metals, or form thiocyanate and precipitate, or oxidize into $\mathrm{CNO}^{-}$, etc. There are many possibilities but not all of them could be covered in the model obtained for synthetic solutions.

The final estimated $T C N$ is compared to the experimental $T C N$ (Table 9.10). The observed and predicted TCN values for \#l barren solution were at least within the same order of magnitude, but the TCN predictions for \#2 and \#3 barrens were an order of magnitude lower than experimental TCN values.

### 9.2.3 Analyses of barren solutions' parameters

In order to find some explanation for the discrepancies in the model fit, other chemical characteristics of the barren solutions were examined. Pertinent data are given in Table 9.11.
table 9.9. the initial parameters required for the model simulation of barren solutions

|  | $\# 1$ | $\# 2$ | $\# 3$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{FCN}=\mathrm{TH}(1)(\mathrm{mol} / \mathrm{L})$ | 0.0032 | 0.0022 | 0.0034 |
| $\mathrm{MCN}=\mathrm{TH}(2)$ | 0.0024 | 0.0091 | 0.0015 |
| $\mathrm{k}_{\mathrm{v}}=\mathrm{TH}(3)\left(\mathrm{h}^{-1}\right)$ | 0.0389 | 0.0389 | 0.0389 |
| $[\mathrm{Cu}-\mathrm{CN}]=\mathrm{TH}(4)(\mathrm{mol} / \mathrm{L})$ | 0.0004 | 0.0007 | 0.0004 |
| $[\mathrm{Zn}-\mathrm{CN}]=\mathrm{TH}(5)$ | 0.0019 | 0.0078 | 0.0001 |
| $[\mathrm{Ni}-\mathrm{CN}]=\mathrm{TH}(6)$ | 0.0001 | 0.00005 | 0.00003 |
| $[\mathrm{Fe}-\mathrm{CN}]=\mathrm{TH}(7)$ | 0.00001 | 0.0006 | 0.0011 |
| $\mathrm{k}_{\mathrm{Cu}}=\mathrm{TH}(8)\left(\mathrm{h}^{-1}\right)$ | 0.0075 | 0.0075 | 0.0075 |
| $\mathrm{k}_{\mathrm{Zn}}=\mathrm{TH}(9)$ | 0.0449 | 0.0449 | 0.0449 |
| $\mathrm{k}_{\mathrm{Ni}}=\mathrm{TH}(10)$ | 0.0009 | 0.0009 | 0.0009 |
| $\mathrm{k}_{\mathrm{Fe}}=\mathrm{TH}(11)$ | 0.0048 | 0.0048 | 0.0048 |
| $\mathrm{k}_{\mathrm{uv}}=\mathrm{TH}(12)$ | 0.0002 | 0.0002 | 0.0002 |
|  |  |  |  |



Figure 9.4 Barren Solution $\boldsymbol{1}$ - Original

| Barren | Solutions | Time (h) |  | TCN (mol/L) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Exper. | Simulated | Exper. | Predicted |
|  | \#1 | 1320 | 1320 | $0.88 \times 10^{-4}$ | $0.29 \times 10^{-4}$ |
|  | \#2 | 1320 | 1320 | $2.8 \times 10^{-4}$ | $1.6 \times 10^{-5}$ |
|  | \#3 | 968 | 970 | 2.4. $\times 10^{-4}$ | $2.4 \times 10^{-5}$ |

table 9.10. ORIGINAL SDMULATIONS ON BARREN SOLUTION
table 9.11. Additional barren solutions' parameters

| $\begin{aligned} & \text { Barren } \\ & \text { Solutions } \end{aligned}$ | $\begin{gathered} \mathrm{CNS}^{-} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |  | $\begin{gathered} \mathrm{CNO}^{-} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |  | $\begin{aligned} & \text { TCN } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$ |  | $\begin{gathered} \mathrm{CN}_{\mathrm{W}} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |  | Total Alkalinity (mg/L as $\mathrm{CaCO}_{3}$ ) |  | Phenolphthalein Alkalinity (mg/L as $\mathrm{CaCO}_{3}$ ) |  | $\begin{gathered} \mathrm{Ca} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |  | pH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | F | I | F | I | F | I | F | I | F | I | F | I | F | I | F |
| \#1 | 51 | 57 | 23 | 0 | 145 | 8.2 | 145 | 2.1 | 398 | 42.5 | 263 | - | 116 | 43 | 11.5 | 8.2 |
| \#2 | 428 | 412 | 125 | 72 | 295 | 7.2 | 286 | 4.7 | 1,309 | 757 | 890 | 115 | 176 | 105 | 12.0 | 9.0 |
| \#3 | 1090 | 1074 | 56 | 23 | 128 | 6.3 | 96.5 | 4.6 | 338 | 292 | 239 | - | 116 | 31.5 | 11.6 | 8.0 |

[^10]Initially, most of the total cyanide measured in the first two barrens was equal to the weak acid dissociable cyanide (compare $T C N$ and $\mathrm{CN}_{\mathrm{W}}$ ). This meant that cyanide was tied up in any other complex but iron cyanide, i.e., susceptible to natural degradation even without UV light present. The difference between $T C N$ and $C N_{W}$ in the third barren solution was assumed to be mostly the cyanide complexed with the iron present in the solution.

The thiocyanate CNS $^{-}$fluctuated slightly in all three barren solutions, but generally it did not change significantly. There was no noticeable production of cyanate (oxidation of $\mathrm{CN}^{-}$to $\mathrm{CNO}^{-}$) but the initial $\mathrm{CNO}^{-}$gradually decomposed, probably into $\mathrm{CO}_{2}$ and ammonium ion, which were lost in the atmosphere.

The total alkalinity was extremely high in the second solution. This was probably the reason that slowed down the decrease of its pH value (high buffering capacity). All three solutions had an $\mathrm{OH}^{-}$ alkalinity at the beginning, which became $\mathrm{CO}_{3}^{2-}$ and $\mathrm{HCO}_{3}^{-}$alkalinity at the end of the experiments. In all barren solutions, some precipitation of $\mathrm{CaCO}_{3}$ also occurred during the experiment (see Table 9.11).
9.2.4 Simulations with the adjusted $\mathbf{k}_{1}$ values

Taking into consideration the high concentrations of Zn and Cu In two out of three barren solutions and the fact that these are the metals with the highest decay coefficients, $\quad \mathbf{k}_{\mathrm{Cu}}=0.0075$ and
$k_{Z_{n}}=0.0449 h^{-1}$ ) it was postulated that these must control the rapid metal decay rate produced in the model simulation. Therefore, the $k_{1}$ values for these two metals were recalibrated using data from the first barren solution. The values obtained, $\mathrm{k}_{\mathrm{Cu}}=0.0022 \mathrm{~h}^{-1}$ and $\mathrm{k}_{\mathrm{Zn}}=$ $0.003 \mathrm{~h}^{-1}$ gave a good model to data fit (see Figure 9.5). Then the recalibrated values were used to simulate the other two barrens. Simulation of the \#2 barren's data was just as good as for \#1 (Figure 9.6b) but the model fit in the case of the third barren solution while improved was still poor (Figure 9.7b). There was a significant improvement in the part of the degradation curve attributed to the metal decay process in the first two barrens. This validates the theory that Cu and Zn control this part of the curve. There was some improvement in the model fit for the third barren solution (compare Tables 9.10 and 9.12) but not significant enough. The estimated TCN values are compared to the experimentally obtained TCN in Table 9.12. The final values estimated for $T C N$ are almost equal to the experimental TCN concentration for \#1 and \#2 barren solutions.

In a way the minimal change in \#3 barren solution simulation was expected since this solution contained a higher Fe concentration than Cu and Zn , therefore the changes in $\mathrm{k}_{\mathrm{Cu}}$ and $\mathrm{k}_{\mathrm{Zn}}$ would not have much effect on the rapid metal dec̣ay rate in this particular case. But, when $k_{F e}$ was recalibrated from $0.0048\left(h^{-1}\right)$ to $0.001\left(h^{-1}\right)$ the model simulation on \#3 barren changed and the fit improved significantly (Figure 9.8a and b). All curves still showed discrepancies


Figure 9.5 Barren Solution 1 - Adjusted $k \mathbf{C u}^{\text {and }} \mathbf{k n}$




Figure 9.7 Barren Solution (3 - a) Original; b) Adjusted $\mathbf{k}_{\mathbf{C u}}$ and $\mathbf{k}_{\mathbf{z}}$

TAELE 9.12. MODIFIED SDIULATION ON RARRER SOLUTIONS

| Barren Solutions | Time ( h ) |  | TCN (E01/L) |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Exper. | Simulated | Exper. | Predicted |
| *1 | 1320 | 1320 | $0.88 \times 10^{-4}$ | $0.9 \times 10^{-4}$ |
| * 2 | 1320 | 1320 | $2.8 \times 10^{-4}$ | $2.4 \times 10^{-4}$ |
| \% 3 | 968 | 970 | $2.4 \times 10^{-4}$ | $0.7 \times 10^{-4}$ |



Figure 9.8 Barren Solution (3-a) Original; b) Adjusted $\mathbf{k}_{\text {Fe }}$
during volatilization process (the first part of the curve). This is suspected to be due to a change in pK value, and the increase in ionic strength of the solution. Ionic strength correction would change the effect of pR by a small amount; this change would not significantly influence the curve predicted by the model. The general conclusion from the model simulations is that the volatilization mass transfer coefficient and the values obtained for metal decay rate for single metallo-cyanide complex solutions, were very good for these particular solutions and to some extent for a low mix. However, in order to be used for high mix and barren solutions, more observation and some recalibration of the parameters is necessary.

The long-term objective of this work is to model the kinetics of removal of cyanide from tailings ponds containing gold mill effluents. The approach in this research was to emulate the general characteristics of the actual systems and by creating a synthetic solutions, examine them under controlled conditions and then compare the results with observations on the actual systems.

The thesis describes the experimental design used in the laboratory to delineate major factors affecting cyanide removal in the synthetic solutions and modelling the results of the synthetic and actual barren solutions.

The general conclusions from the experiments are the following:

1) Volatilization and metal cyanide decay are the controlling mechanisms for removal of cyanide from solution; volatilization is a very rapid process, therefore metal cyanide decay is the rate limiting mechanism.
2) Analysis of the results from the full $2^{3}$ factorial design show that temperature has the most significant effect on the volatilization coefficients of all cyanide solutions examined, including NaCN solution. The aeration effect on the volatilization coefficient is
significant combined with temperature, but only for the first 48 to 72 hours of the volatilization process.
3) Temperature has a large main effect upon the metal cyanide decay in most of the solutions. UV light has an effect on Fe-CN and low mix solutions.
4) A model was derived to describe cyanide removal from solution. It assumes that the volatilization of $H C N$ and the decay rate of one metallo-cyanide complex control the disappearance of total cyanide from single metallo-cyanide solutions.
5) The rate of volatilization of $H C N$ ( $k_{v}$ ) from the single metallo-cyanide solutions was determined to be within $95 \%$ confidence interval of the volatilization rate of $H C N$ in sodium cyanide solutions. The means and standard deviations for $k_{v}$ values at $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ were: $0.0124 \pm 0.008$ and $0.0318 \pm 0.008$, respectively. The metal decay rates varied among different metals and at different test conditions.
6) The best estimates of the metal decay coefficients from single metallo-cyanide complex solutions and their energy of activation using Arrhenius's equation were determined:

| Metallo-Cyanide <br> Complex Solutions | $k_{1}$ | at $4^{\circ} \mathrm{C}\left(\mathrm{h}^{-1}\right)$ | $\mathrm{k}_{1}$ | at $20^{\circ} \mathrm{C}\left(\mathrm{h}^{-1}\right)$ |
| :--- | :---: | :---: | :---: | :---: | $\mathrm{E(kJ/mol)}$|  | 0.00295 | 0.00753 | 39.4 |
| :--- | :--- | :--- | :--- |
| $\mathrm{Na}_{2} \mathrm{Cu}(\mathrm{CN})_{3}$ | 0.01783 | 0.04496 | 39.0 |
| $\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}$ | 0.00044 | 0.00095 | 33.0 |
| $\mathrm{Na}_{2} \mathrm{NH}(\mathrm{CN})_{4}$ | 0.00143 | 0.00473 | 50.4 |
| $\mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ |  |  |  |

These energy of activation values seem to point out that the reactions occurring are on a border where molecular diffusion control ends and chemical reaction control starts.
7) These metal decay coefficients were used to simulate the experimental data of the mixed metallo-cyanide solutions. They produced a good fit for the low mixes. The model fits the data at the $95 \%$ confidence level for five of the eight test conditions.
8) The model, calibrated using the rate coefficients from the single synthetic solutions was applied to the high mix and the actual gold mill effluents (barren solutions). For the high mixes and barren solutions the results showed that the model can be used for the basic estimate of the cyanide degradation rate. For the more precise results the recalibration of the parameters is necessary as a function of the solution's metal content.

## 11 RECOMMENDATIONS

The following are recommended for future modelling work:

1. Experiments with the solutions containing single metallocyanide complexes with the high concentration of metal, in order to determine the metal cyanide decay rate that could be used for modelling high mixes.
2. Recalibration of the metal decay rates for at least 10 to 15 different barren solutions, to determine the best values that could be used for modelling other similar solutions.
3. Examine the possibility of the formation of more than one metallo-cyanide complexes in the high mixes and barren solutions.
4. To develop a model for dynamic systems that could be applied to cyanide removal from the tailings pond that is continuously being filled.

The recommendations that could be applied to any future study concerning cyanide in gold mill effluents, are the following:

1. Detailed characterization of the individual gold mill effluents is required before treatment.
2. Investigate techniques for obtaining and preserving mine process samples containing particulates.
3. Investigate the possibility of refining existing methods and/or devising better methods for quantifying cyanide species in process effluents.
4. Study microbial degradation of cyanide in mine tailings ponds over long retention times.
5. Develop a model with which to predict the equilibrium chemical species of all interactive inorganic and organic chemicals in mill effluents.
6. Devise a method to accelerate natural degradation of cyanide and metallo-cyanide compounds in tailings impoundments.

## REFERENCES

Adamson, A.W., J.P. Welker and G. Volpe. "Exchange studies with complex ions. I. The exchange of radiocyanide with certain heavy metals complex cyanides." Journal of the American Chemical Society 72:4030-4036, Sept. 1950.

Alesii, B.A. and W.H. Fuller. "The mobility of three cyanide forms in soil." U.S. Environmental Protection Agency, National Solid and Hazardous Waste Research Center, EPA-600/9-76-016, 1976.

Amax of Canada Ltd., "Background information on cyanide/mining/environment." Vancouver, B.C., Aug. 1980 .

APHA-AWWA-WPCF. "Standard methods for the examination of water and wastewater." 15 th ed. Am. Publ. Health Ass., Am. Water Works Ass., Water Pollut. Contr. Fed., Washington, D.C. p. 1134, 1980.

Asperger, S. "Kinetics of the decomposition of potassium ferrocyanide in ultra violet light." Transactions Faraday Society, 48(7):617-624, 1952.

Balzani, V., and V. Carassiti. Photochemistry of coordination compounds. Academic Press, New York, N.Y. 432 p. 1970.

Bard, Y. Nonlinear parameter estimation. Academic Press, New York, N.Y. 1974.

Box, G.E.P., W.G. Hunter, J.S. Hunter. Statistics for experiments. John Wiley \& Sons, Inc., New York, N.Y. 1978.

Broderius, S.J. "Determination of molecular hydrocyanic acid in water and studies of the chemistry and toxicity of fish of metal cyanide complexes." Ph.D. dissertation, Oregon State University, Corvallis, Ore. 1973.

Broderius, S.J. and L.L. Smith, Jr. "Direct photolysis of hexacyanoferrate complexes. Proposed applications to the aquatic environment." U.S. Environmental Protection Agency EPA-600/3-80-003, 50 pp. 1980.

Brunker, R.L. "The biological degradation of cyanides by autotrophic organisms. Industrial Wastewater Treatment." Proc. 12th Midatlantic Industrial Waste Confer., Bucknell Univ. Lewisburg, P.A. pp. 146-151, 1980.

Burdick, G.E. and M. Lipschuetz. "Toxicity of ferro- and ferricyanide solutions to fish, and determination of the cause of mortality." Transaction of the Amer. Fish Soc. 78:192-202, 1950.

Caruso, S.C. "The chemistry of cyanide compounds and their behavior in the aquatic environment." Carnegie-Mellon Institute of Research, Pittsburg, P.A. 1975.

Clevenger, G.H. and H. Morgan. "Atmospheric decomposition of cyanide solutions." Mining and Scientific Press. p. 413-423, Sept. 1916.

Cotton, F.A. and G. Wilkinson. Advanced inorganic chemistry. A comprehensive text. Interscience Publishers, A division of John Wiley \& Sons. 1962.

Conn, K. "Cyanide analysis in mine effluents." Presented at Canadian Mineral Processors 13th Annual Meeting, Ottawa. Jan. 1981.

Conn, K. Private communication, EPS, Wastewater Technology Centre, Bur1ington, Ont. 1984.

Crouse, W.C. and D.W. Margerum. Inorganic Chemistry, Vol. 13, No. 6, p. 1437, 1974.

Daniel, C. "Use of half-normal plots in interpreting factorial two-level experiments." Technometrics. 1:311-341, 1959.

Dean, J.A. (Ed.) Lange's handbook of chemistry, llth ed. McGraw-Hill, Toronto, Ont. 1973.

Dodge, B.F. and D.C. Reams. "Disposal of plating room wastes. I. A critical review of the literature pertaining to the disposal of waste cyanide solutions." Plating, 36, 463-9, 512, 571-7, 664, 723-5, 728-32. 1949.

Dodge, B.F. and W. Zabban. "Disposal of plating room wastes. IV. Batch volatilization of hydrogen cyanide from aqueous solutions of cyanides." Plating 30, 1133-9, 1952.

Doudoroff, P. "Some experiments on the toxicity of complex cyanides to fish." Sewage and Ind. Wastes 28(8):1020-1040, 1956.

Doudoroff, P. and G. Leduc and C.R. Schneider. Acute toxicity to fish of solutions containing complex metal cyanides, in relation to concentrations of molecular hydrocynic acid." Trans. Am. Fish. Soc. 95:6-22, 1966.

Doudoroff, P. "Toxicity to fish of cyanides and related compounds. A review." Environmental Research Laboratory. EPA-600/3-76-038, 155 pp. Duluth, Minnesota, 1976.

Draper, N.R. and H. Smith. Applied Regression Analysis. John Wiley \& Sons, Inc. New York, N.Y., 407 p. 1966.

Ecological Analysts, Inc. "Cyanide: An overview and analysis of the literature on chemistry, fate, toxicity and detection in surface waters." Prepared for The Inter-Industry Cyanide Group, Towson, Maryland, U.S.A. 1979.

Fairbridge, R.W. The encyclopedia of geochemistry and environmental sciences. Volume IVA. Van Nostrand Reinhold Company, New York, N.Y., 1972.

Ford-Smith, M.H. "The chemistry of complex cyanides: A literature survey." Her Majesty's Stationary Office, London, 93 p., 1964.

Freeman, P.A. "Wind driven aerators for lagoons." Workshop on Low-Cost Wastewater Treatment, Clemson, S.C., April 19-21, 1983.

Freiser, H. and Q. Fernando. "Ionic equilibria in analytical chemistry." John Wiley \& Sons, Inc., New York, N.Y., 334 p, 1963.

Gaudin, A.M. Flotation. McGraw-Hill Book Company, Inc. New York, N.Y., 165 p. 1932.

Halliburton, D. "Discussion paper on water pollution control in the primary gold mining and milling industry." Prepared for the Water Pollution Directorate, Ottawa, Ont., March 1980.

Hedley, N. and H. Tabachnick. "Chemistry of cyanidation." American Cyanamid Company, New York, Number 23, p. 54, 1958.

Hendrickson, T.N. and L.G. Daignault. "Treatment of complex cyanide compounds for reuse and disposal." Report No. EPA-R2-73-269, U.S. Environmental Protection Agency, 1973.

Howe, R.H.L. "Bio-destruction of cyanide wastes - advantages and disadvantages." Int. J. Air Water Pollut. 9:463-478, 1965.

Huiatt, J.L., J.E. Kerrigan, F.A. Olson, and G.L. Potter. "Proceedings of a Workshop. Cyanide from mineral processing." Utah Mining and Mineral Resources Research Institute, Salt Lae City, Utah. Feb. 1983.

Hyatt, D.E. "The chemical basis of techniques for the decomposition and removal of cyanides." Society of Mining Engineers, AIME Transactions, Vol. 260, p. 204-8, Sept. 1976.

IEC. "Factors affecting natural degradation of free and metal-complexed cyanides from gold milling effluents." International Environmental Consultants Ltd., Toronto, Ont., 45 pp., 1979.

Ilyalemdinov, A.N., P.B. Enker and Z.G. Vlasova. "Role of Microorganisms in Removing Cyanides from Effluents." Mikrobiologiya 46(2):358-362 (Russ.) Chem. Abs. 87:90174h, March 1977.

Ingles, J. "Chemistry and toxicity of cyanides in gold mill effluents." A discussion paper prepared for the 10 th meeting of the Gold Processors Working Group, Environment Canada, Hull, Quebec, 1981(a).

Ingles, J. "The treatment of mine mill effluents for the removal of iron cyanides." Prepared for Mining and Metallurgical Division, Water Pollution Control Directorate, EPS, Hull, Quebec, 1981b.

Knowles, C.J. "Microorganisms and cyanide." Bacteriol. Reviews Vol. 40(3):652-680, 1976.

Kolski, G.B. and D.W. Margerum. "Kinetics of formation and dissociation of tetracyanonickelate (II) Ion." Inorganic Chemistry 7(11):2239-2243, Nov. 1968.

Kolthoff, I.M., E.B. Sandell, E.J. Meehan, S. Bruckenstein. Quantitative Chemical Analysis, Published by The Macmillan Company, Collier-Macmillan Ltd., London, 1969.

Kunz, R.G., J.P. Casey and J.E. Huff. "Refinery cyanides: A regulatory dilemma." Hydrocarbon Processing, Oct. 98-106. 1978.

Leduc, G., R.C. Pierce and I.R. McCracken. "The effects of cyanides on aquatic organisms with emphasis upon freshwater fishes." National Research Council of Canada, Ottawa, 1982.

Long, F.A. "Exchange reactions of tetracyanonickelate ion: The structure of nickel cyanide." Journal of the American Chemical Society 73:537-540, Feb. 1951.

Ludzack, F.J. and R.B. Schaffer. "Activated Sludge Treatment of Cyanide, Cyanate and Thiocyanate." Proceedings of the 15 th Industrial Waste Conference, Purdue University, p 439, 1960.

Ludzack, F.J., W.A. Moore, H.L. Krieger, and C.C. Ruchhoft. "Effect of cyanide on biochemical oxidation in sewage and polluted water." Sewage Ind. Wastes 23:1, 298-1, 307. 1951.

Lur'e, Yu. Yu. and V.A. Panova. "The behaviour of cyanide compounds in water ponds." Gidrokhim. Materialy 37:133-143, 1962.

Luthy, R.G. and S.G. Bruce. "Kinetics of reaction of cyanide and reduced sulfur species in aqueous solution." Environ. Sci. Technol. 13:1481-1487, 1979.

Luthy, R.G., S.G. Bruce, R.W. Walters, D.V. Nakles. "Identification and reactions of cyanide and thiocyanate coal gasification wastewaters." Presented at the 50th Annual Conference Water Pollution Control Federation, Philadelphia, P.A. Oct. 1977.

MacDiarmid, A.G. and N.F. Hall. "Illumination - pH effects in solutions of complex cyanides." J. Amer. Chem. Soc., 75, 5204-7, Nov. 1953.

McDuff, R.E., F.M.M. Morrel. "Description and use of the chemical equilibrium program REDEQL2." Technical Report EQ-73-02, California Institute of Technology, Pasadena, California. 1974.

Meeter, D.A. and P.J. Wolfe. "Non-linear least squares (GAUSHAUS)." University of Wisconsin Computing Center, Wisconsin. 1965.

Milne, D. "Equilibria in dilute cyanide waste solutions." Sewage and Industrial Wastes, 22(7):904-911. 1950a.

Milne, D. "Disposal of cyanides by comlexation." Sewage and Ind. Wastes. 22(9):1192-1199. 1950b.

Moir, J. "Loss of cyanide and value of protective alkali." Journal of Chem. Met. and Min. Soc. of South Africa, Vol. 16, p. 9. 1910.

Moore, W.J. Physical Chemistry, 3rd Ed., Prentice Hall Inc., Englewood Cliffs, N.J. 1962.

Murphy, R.S. and J.B. Nesbitt. "Biological treatment of cyanide wastes." Engineering Research Bulletin B-88. The Pennsylvania State University, University Part, P.A. 66 pp. 1964.

Noblitt, H.L. "Complex ions of copper and cyanide." Department of Energy, Mines and Resources. Mines Branch, Ottawa, Sept. 1973.

Nriagu, J.O. Nickel in the Environment. John Wiley \& Sons, Toronto, Ont. 1980.

Palaty, J. and M. Horokova-Jakubu. "The course and rate of removal of cyanides from water under natural conditions." Scientific paper from Institute of Chemical Technology, Prague, Faculty of Technology of Fuel and Water V3, Part 1. 1959.

Penneman, R.A., R. Bain, G. Gilbert, L.H. Jones, R.S. Nyholm, and G.K.N. Reddy. "An infrared study of pentacyano-,hexacyano-, and chloropentacyano-nickelate (II) in aqueous solutions." Journal of the Chemical Society, p. 2266-2274, 1962 .

Perry, R.H. Engineering Manual. McGraw-Hill Book Company. 1976.

Pol'kin, S.I. and V.N. Krylova. "Promising trends in the removal of cyanide compounds from the waste waters of concentration plants." Moscow Inst. of Steel \& Alloys, USSR, No. 2, p. 3-7, 1979.

Raef, S.F., W.G. Characklis, M.A. Kessick, and C.H. Ward. "Fate of cyanide and related compounds in aerobic microbial systems. I. Chemical reaction with substrate and physical removal." Water Research, 11:477-483, 1977.

Renn, C.E. "Biological properties and behaviors of cyanogenic wastes." Sewage and Industrial Wastes. 27(3):297-308, 1955.

Resnick, J.D., W.A. Moore and M.B. Ettinger. "Behavior of cyanates in polluted water." Ind. Eng. Chem. 50(1)January. 1958.

Scott, J.S. and J.C. Ingles. "Removal of cyanide from gold mill effluents." Presented at the 13th Annual Meeting of Canadian Mineral Processors, Ottawa, Ont. 1981.

Schmidt, J.W., L. Simovic and E.E. Shannon. "Development studies for suitable technologies for the removal of cyanide and heavy metals from gold milling effluents." Proc. 36th Ind. Waste Conf. Purdue University, Lafayette, Indiana. p. 831-846. 1981.

Sharpe, A.G. "The chemistry of cyano complexes of the transition metals." Academic Press, New York. 302 pp. 1976.

Shaw, M.P. "A kinetic model for the natural dechlorination of municipal effluents." M. Eng. Thesis, McMaster University, Hamilton, Ont. 1983.

Smith, J.M. Chemical Engineering Kinetics, McGraw-Hill Book Company, 1981.

Stumm, W. and J.J. Morgan. Aquatic Chemistry. John Wiley \& Sons, New York, N.Y. 1981.

Taggart, A.F. Handbook of mineral dressing, ores and industrial minerals. John Wiley and Sons, Inc. New York, Sec. 12, p. 26. 1945.

Tarzwell, C.M. "Discussion" of C.E. Renn's paper "Biological properties and behaviors of cyanogenic wastes." Sewage and Industrial Wastes 27(3):308-310, March 1955.

Towill, L.E., J.S. Drury, B.L. Whitfield, E.B. Lewis, E.L. Galyan, and A.S. Hammons. "Reviews of environmental effects of pollutants: V. Cyanide." Oak Ridge National Lab. ORNL/EIS-81. EPA-600/1-78-027. 190 pp. 1978.

Tremblay, R. "Laboratory testing for flowsheet development and optimization." Presented at the 18th Annual Program, Professional Development Seminars, Mineral and Metallurgical Engineering, Mineral Processing of Gold Ores. McGill University, Montreal, Oct. 31-Nov. 2, 1983.
U.S. Environmental Protection Agency. "Cyanides, ambient water quality criteria." Criteria and Standards Division, Office of Water Planning and Standards. U.S. EPA. 1979.

Weber, W.J. Jr., and O. Corapcioglu. "Catalytic oxidation of cyanides." Proc. 36th Annual Industrial Waste Conference, Purdue University, Lafayette, Indiana. 1981.

APPENDIX A
Cyanide Terminology

## A CYANIDE TERMINOLOGY

Cyanide ion refers to the free cyanide ion $\mathrm{CN}^{-}$.
Molecular HCN - the cyanide in form of an uncharged intact molecule in aqueous solution. Therefore the terms hydrogen cyanide, hydrocyanic acid and $H C N$ all refer to cyanide as molecular $H C N$.

Free cyanide - the summation of molecular HCN and the cyanide ion ( $\mathrm{HCN}+\mathrm{CN}^{-}$) in aqueous solution.

Simple cyanide refers to a cyanide compound which dissociates directly in water to a cation and the cyanide ion with no soluble intermediates.

Complex cyanide - cyanide compound which dissociates in water to a cation and a negative ligand which may be subject to further dissociation.

Weak-acid dissociable cyanides $\left(C N_{W}\right)$ - all forms of cyanide excluding iron recovered by the chemical analysis.

Total cyanide (TCN) includes free cyanide, and all the simple and complex cyanides.

## APPENDIX B

Deternination of Cyanide by
Picric Acid and Distillation Methods

## B. 1 DETERMINATION OF CYANIDE BY PICRIC ACID METHOD

Principle
Cyanide ion and simple cyanides react with picric acid at a pH of 10 at elevated temperature to form a stable coloured complex. The complex obeys Beer's law from 0 to at least $500 \mu \mathrm{~g}$ of $\mathrm{CN}^{-}$(Kolthoff et al., 1969). With a 5 cm cell, in the spectrophotometer, the detection limit is $1.3 \mu \mathrm{~g}$.

Interferences
Thiocyanates and cyanates in concentrations up to $50 \mathrm{mg} / \mathrm{L}$ do not interfere. Sulphide ion causes the most interference, 0.1 mg of sulphide being equivalent to 0.025 mg of cyanide ion. Sulphite ion interferes at levels in the microgram range.

## Precautions

Picric acid is also known as trinitrophenol, and is explosive. It is not readily detonated and is not particularly hazardous to use, but all spills should be wiped up and solutions should be disposed of by washing down a sink with copious amounts of water. Aqueous and organic solutions act as dyes and stain many materials, including the skin. Most of the stain can be removed from working surfaces and glassware by means of acetone, but the hands should be protected with rubber gloves.

Storage
Samples should be preserved by adding enough NaOH (either 50\% $\mathrm{w} / \mathrm{w}$ or pellets) to raise the pH to 12.

## Apparatus

Regular laboratory glassware, a hotplate capable of heating samples at $90-95^{\circ} \mathrm{C}$, and a spectrophotometer for measuring optical density at 490 nm .

Reagents

1. Stock cyanide solution ( $1 \mathrm{~mL} \equiv 1000 \mu \mathrm{~g} \mathrm{CN}^{-}$)

Dissolve 1.884 g NaCN in distilled water and dilute to 1000
mL. Adjust the pH to 12 with NaOH . Standardize as follows: Dilute 5.0
mL aliquot of stock solution in 100 mL of distilled water at pH 11 or
higher, add 15 drops of rhodanine indicator solution and titrate with
standard $\mathrm{AgNO}_{3}$ solution to a salmon-pink end point.
2. Working cyanide solution

Prepare daily by appropriate dilution of stock solution.
3. Rhodanine indicator solution

Dissolve $1.632 \mathrm{~g} \quad \mathrm{AgNO}_{3}$ in distilled water and dilute to
$1000 \mathrm{~mL} .1 \mathrm{~mL} \equiv 500 \mu \mathrm{~g} \mathrm{CN}{ }^{-}$.
4. Standard silver nitrate solution

Dissolve $1.632 \mathrm{~g} \quad \mathrm{AgNO}_{3}$ in distilled water and dilute to $1000 \mathrm{~mL} .1 \mathrm{~mL} \equiv 500 \mu \mathrm{~g} \mathrm{CN}$.
5. Picric acid solution

- $1 \%$ aqueous.

6. 0.1 EDTA ( $37.22 \mathrm{~g} / \mathrm{L}$ of EDTA - disodium salt)
7. EDTA $-\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution

- 15 g/L EDTA (disodium salt)
$-52 \mathrm{~g} / \mathrm{L} \mathrm{Na}_{2} \mathrm{CO}_{3}$


## Preparation of Calibration Curve

1. Into a series of 250 mL volumetric flasks, pipet appropriate amounts of cyanide working solution to cover the working range up to $500 \mu \mathrm{~g} \mathrm{CN}$.
2. Add enough distilled water to bring the volume to approximately 100 mL .
3. Include a flask containing no cyanide as a blank.
4. Continue from the beginning of step 2 under "Analysis of Samples".

Analysis of Samples

1. Pipet an appropriate aliquot of sample up to 10 mL* into a 250 mL volumetric flask. The aliquot should not contain more than $500 \mu \mathrm{~g} \mathrm{CN}$. Bulk to about 100 mL .
2. Add 2 mL of 0.1 EDTA solution, 10 mL of the EDTA $-\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and 15 mL of the $1 \%$ picric acid solution.
3. Heat on the hotplate at $90^{\prime}$ to $95^{\circ} \mathrm{C}$ for 20 min .
4. Cool to room temperature with cold water; and dilute to 250 mL with distilled water.
5. Measure the absorbance in a spectrophotometer at 490 nm with a 5 cm cell.
6. Construct a calibration graph by plotting the absorbence vs $\mu \mathrm{g}$ of cyanide.

Note: *Volumes larger than 10 mL may be taken provided that the pH is adjusted to 10 with pH meter and buffer.
7. From the calibration graph, read the number of $\mu \mathrm{g}$ of cyanide in sample and blank solutions.
8. Calculate the concentration of $\mathrm{CN}^{-}$in the sample:

$$
\mathrm{CN}^{-}(\mathrm{mg} / \mathrm{L})=\frac{\mathrm{a}}{\mathrm{~b}}
$$

where $a=\mu \mathrm{g}$ of $\mathrm{CN}^{-}$in sample aliquot
$b=$ volume of sample taken for analysis

## B.2. CYANIDE DETERMIMATION BY DISTILLATION METHOD

## Principles

Most complex cyanides (except gold and cobalt complexes) can be coverted to molecular HCN gas by boiling with hydrochloric acid and hydroxylamine hydrochloride. The $H C N$ gas is liberated under reduced pressure, absorbed in a solution of 1 N sodium hydroxide and determined either titrimetrically or colorimetrically, depending on the amount of cyanide present. Sulphides are removed from the sample by treatment of the sample with lead carbonate. Sulphides originating from the sample as either sulphide or thiocyanate are precipitated in the absorbing solution as cadmium sulphide using cadmium chloride.

Using the titration (for samples above $5 \mathrm{mg} / \mathrm{L} \mathrm{CN}^{-}$), an aliquot of the sodium hydroxide absorbing solution is titrated with silver nitrate until an excess of silver ion is detected with a special silver ion indicator. In the colorimetric test (for samples below $5 \mathrm{mg} / \mathrm{L}$ $\mathrm{CN}^{-}$), cyanide ion is first converted to cyanogen chloride (ClCN) using chloramine $T$. This in turn forms a blue complex with a sodium isonicotinate-sodium barbiturate reagent. Absorbence of this complex, measured at 600 nm , is proportional to the amount of cyanide present in the aliquot of sodium hydroxide taken for analysis.

Using the described procedure, this method has been used on samples with a minimum reportable value of $0.01 \mathrm{mg} / \mathrm{L}$ cyanide.

Storage
Samples mast be preserved by adding enough sodium hydroxide (either pellets or $50 \% \mathrm{w} / \mathrm{w}$ ) to raise the pH to 12 . For samples
containing high levels of soluble sulphides, one precipitates the sulphides first using lead carbonate, filter, before raising the pH to 12.

## Apparatus

The distillation system (Figure B.1) consists of: (1) 3-neck one litre distilling flask, (2) Friedricks condenser (315 mm), (3) Thistle tube with ground glass joint to fit flask (the tube must extend below the level of liquid in the flask), (4) 125 mL gas absorbing bottle (impinger) with ground glass joint and fritted disc, and (5) low vacuum system. The tube foining the condenser (2) to the gas washing bottle (4) should be glass as far as possible. The air entering the thistle tube should be scrubbed with 1 N NaOH to remove any airborn $H C N$. Heating Mantle

Spectrophotometer capable of measuring at 600 nm

## Reagents

1. Sodium hydroxide - 1N. Dissolve 40 g NaOH in distilled water and dilute to 1 L .
2. Acetic acid - G1acial.
3. Acetic acid - 1:4. Slowly add 100 mL glacial acetic acid to 400 mL distilled water.
4. Chloramine-T solution - Dissolve 1 g chloramine-T in distilled water and dilute to 100 mL . Prepare daily.
5. Isonicotinic acid - barbituric acid reagent. In 1000 mL of distilled water at 60 to $70^{\circ} \mathrm{C}$ dissolve 12 g of $\mathrm{NaOH}, 20 \mathrm{~g}$ of isonicotinic acid and 10 g of barbituric acid. After cooling, adjust the pH to 8.0 with acetic acide.


Figure B. 1 The Distillation System
6. p-Nitrophenol Indicator - $0.1 \% \mathrm{~W} / \mathrm{V}$ solution in ethanol.
7. Standard Silver Nitrate Solution. Dissolve $1.632 \mathrm{~g} \quad \mathrm{AgNO}_{3}$ in distilled water and dilute to $1000 \mathrm{~mL} .1 \mathrm{~mL}=500 \mu \mathrm{~g} \mathrm{CN}^{-}$.
8. Rhodanine Indicator Solution. Dissolve $0.02 \mathrm{~g} \mathrm{p}=$ dimethyl-amino-benzal-rhodanine in 100 mL acetone.
9. Stock Cyanide Solution ( $1 \mathrm{~mL}=1 \mathrm{mg} \mathrm{CN}$ ). Dissolve 1.884 g NaCN in distilled water and dilute to 1000 mL . Adjust pH to at least 12. Standardize every day as follows: Dilute 1.0 mL aliquot of stock solution in 100 mL of distilled water at pH 11 or higher, add 0.5 mL of rhodanine indicator solution and titrate with standard $\mathrm{AgNO}_{3}$ solution, to a salmon pink end point.
10. Working Cyanide Solution ( $1 \mathrm{~mL}=1 \mathrm{\mu g} \mathrm{CN}^{-}$). Prepare daily. Dilute 1 mL of stock and 10 mL of 1 N NaOH to 1000 mL with distilled water.
11. Hydrochloric Acid - hydroxylamine hydrochloride reagent 50\% (V/V) - $10 \%$ (W/V) - Dissolve $100 \mathrm{~g} \mathrm{NH} 2 \mathrm{OH} \cdot \mathrm{HCl}$ in 300 mL of distilled water. Add 500 mL of hydrochloric acid and dilute to 1000 mL .
12. Cadmium Chloride. Powder.

Procedure

1. Place 400 mL of distilled water into the lL boiling flask. Insert the thistle tube and rinse the diffuser with distilled water.
2. Add $100 \mathrm{~mL} 1 \mathrm{~N} \mathrm{NaOH}, 0.2$ to 0.3 g cadmium chloride powder to the gas absorbing bottle (Note 2). Turn on the vacuum, and insert the diffuser into the gas absorbing bottle.
3. Close the system by making the connection between the condenser and the gas absorbing bottle. Into the boiling flask through the thistle tube add 25 mL of HCl - HH , rinse with distilled water, add 100 mL of sample (see Note 1).
4. Turn on the heat and cold water and allow the mixture to boil for 45 min .
5. After boiling, turn off the heat and allow the vacuum to operate for 15 to 20 min .
6. Disconnect the condenser from the gas absorbing bottle, turn off pump and water, disconnect and reconnect the vacuum a couple of times to transfer any cyanide from inside the air diffuser out to the solution in the bottle.
7. Remove the diffuser from the absorbing solution while the vacuum is operating. Also rinse the diffuser with $25 \% \mathrm{HCl}$ and turn off the vacuum. Filter the absorbing solution through acid washed \#40 Whatman paper (see Note 3) into a polyethylene bottle.
8. Clean the entire system thoroughly between samples using 25\% hydrochloric acid ( $V / V$ ). Rinse the bolling flask with distilled water.

## Notes

1. For samples containing high levels of sulphide, ensure that they have been treated for sulphide removal as soon as possible after sampling. Add sufficient lead carbonate to remove all sulphide, filter and raise the pH to 12.
2. Cadmium chloride is added to the gas absorbing bottles when samples are known or suspected to contain sulphide, thiocyanate, or thiosulphate.
3. Before filtering the absorbing solution through \#40 Whatman paper, rinse the paper once with $25 \% \mathrm{HCl}$ and twice with distilled water.
A. Titrimetric Method - to be used on samples containing $5.0 \mathrm{mg} / \mathrm{L}$ cyanide or greater.
4. Treat sample by distillation procedure.
5. Pipet an aliquot (up to 50 mL ) of the 1 N Sodium hydroxide absorbing solution into a 300 mL Erlenmeyer flask. Dilute to about 100 mL . Ensure that the pH is at least 11 . Add 0.5 mL of rhodanine indicator.
6. Titrate with silver nitrate working solution to a salmon pink end point.
7. Calculations
$m g / L$ Cyanide as $C N^{-}=\frac{(A-B) 500}{C} \times \frac{100}{D}$
where:
$A=m L$ of silver nitrate required to titrate sample aliquot
$B=m L$ of silver nitrate required to titrate blank
$C=m L$ of sodium hydroxide absorbing solution taken for titration
$\mathrm{D}=\mathrm{mL}$ of distilled sample
B. Colorimetric Method - to be used when cyanide concentration is below $5.0 \mathrm{mg} / \mathrm{L} \mathrm{CN}$.
8. Treat sample by distillation procedure.
9. Pipet either 1 mL or 10 mL of absorbing solution (depending on cyanide concentration being measured) into a 25 mL volumetric flask. For samples in the range 0 to $1.0 \mathrm{mg} / \mathrm{L} \mathrm{CN}^{-}$, use 10 mL .
10. Adjust the volume to about 15 mL with distilled water, add 2 drops of $p$-nitrophenol indicator and neutralize to a colorless end point using $1: 4$ acetic acid.
11. Repeat for a blank and standards (1 mL or 10 mL in NaOH ), depending on the level of cyanide being measured.
12. To each flask, add 1.0 mL of chloramine T solution (1\%) and mix. Allow to stand for 2 to 5 min .

6
Add 5.0 mL of the sodium isonicotinate - sodium barbiturate reagent, dilute to volume and mix.
7. After 30 min read the absorbence at 600 nm ( 1 cm cells) using the prepared blank as a reference. If working in the 0 to $1.0 \mathrm{mg} / \mathrm{L}$ range, use the 10 mL blank; if working in the 0 to $10 \mathrm{mg} / \mathrm{L}$ range use the 1 mL blank.
8. Construct a graph of recorded absorbences for standards and corresponding $\mu \mathrm{g}$ of cyanide present. One graph each for 0 to $1.0 \mathrm{mg} / \mathrm{L}$ range and one graph for 0 to $10 \mathrm{mg} / \mathrm{L}$ range.
9. Calculation:
$\mathrm{mg} / \mathrm{L}$ Cyanide as $\mathrm{CN}^{-}=\frac{\mathrm{A} \times \mathrm{B}}{\mathrm{C} \mathrm{\times D}}$
where:
$A=\mu g$ of cyanide ion from graph
$B=$ volume of absorbing solution (usually 100 mL )
$C=$ original aliquot of sample taken for distillation (usually 100 mL )
$D=$ volume of absorbing solution taken for colorimetric analyses (1 or 10 mL ).

## APPENDIX C

## Experimental Results



|  |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \mathrm{AIR} \\ & \mathrm{UV} \end{aligned}$ |  |  | $4^{\circ} \mathrm{C}$no AIn |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { NO } \mathrm{UV} \end{gathered}$ |  |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { no AIR } \\ \text { no UV } \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Synth } \\ & \text { Cyan } \\ & \text { solu } \end{aligned}$ |  | h) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{Er} / \mathrm{L}$ | 7 <br> Removed | $t(h)$ | $\mathrm{CH}_{\mathbf{T}}(\mathrm{m} / \mathrm{h})$ | 8 Removed | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{n} / \mathrm{h}$ | L) | 7 <br> temoved | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{ms} / \mathrm{h})$ | 2 Removed |
| MaCN | 0 | 12 | 203.0 | 0.0 | 0 | 200.0 | 0.0 | 0 | 202.0 |  | 0.0 | 0 | 225.0 | 0.0 |
|  | 7 |  | 176.4 | 13.1 | 7 | 119.0 | 40.5 | 19 | 148.0 |  | 26.6 | 17 | 158.9 | 29.4 |
|  | 24 |  | 129.9 | 36.0 | 24 | 111.6 | 44.2 | 24 | 140.7 |  | 30.4 | 24 | 105.7 | 53.0 |
|  | 48 |  | 104.8 | 48.4 | 31 | 88.8 | 55.6 | 41 | 108.2 |  | 46.4 | 41 | 98.2 | 56.3 |
|  | 54 |  | 76.9 | 62.1 | 48 | 73.3 | 63.4 | 48 | 82.1 |  | 59.3 | 48 | 91.9 | 59.1 |
|  | 72 |  | 38.4 | 81.0 | 72 | 48.3 | 75.9 | 65 | (90.0) |  | 55.4 | 65 | (88.3) | 60.7 |
|  | 79 |  | 29.2 | 85.6 | 144 | 17.2 | 91.4 | 72 | 53.0 |  | 73.8 | 12 | 65.8 | 70.7 |
|  | 144 |  | 10.6 | 94.8 | 168 | 13.3 | 93.4 | 113 | (58.3) |  | 71.1 | 137 | 63.6 | 71.7 |
|  | 151 |  | (10.6)* | 94.8 | 175 | 11.3 | 94.4 | 144 | 41.4 |  | 79.5 | 144 | 62.5 | 72.2 |
|  | 168 |  | 6.9 | 96.6 | 192 | 10.9 | 94.5 | 151 | 44.1 |  | 78.2 | 161 | 60.2 | 73.2 |
|  | 175 |  | 5.0 | 97.5 | 199 | (11.9) | 94.0 | 168 | 37.1 |  | 81.6 | 168 | 58.5 | 74.0 |
|  | 192 |  | 3.3 | 98.4 | 216 | 5.3 | 97.3 | 175 | 36.3 |  | 82.0 | 185 | 56.1 | 75.1 |
|  | 216 |  | 1.2 | 99.4 | 223 | 4.6 | 97.7 | 192 | 36.1 |  | 82.1 | 192 | (45.4) | 79.8 |
|  | 240 |  | 0.5 | 99.7 | 240 | 4.0 | 98.0 | 199 | (37.6) |  | 81.4 | 209 | 46.8 | 79.2 |
|  | 312 |  | (0.5) | 99.7 | 288 | 2.9 | 98.5 | 216 | 33.1 |  | 83.6 | 216 | (39.1) | 82.6 |
|  |  |  |  |  | 312 | 2.6 | 98.7 | 223. | 24.5 |  | 87.9 | 233 | 39.3 | 82.5 |
|  |  |  |  |  | 319 | 2.4 | 98.8 | 241 | 23.2 |  | 08.5 | 256 | 38.3 | 83.0 |
|  |  |  |  |  |  |  |  | 247 | 21.8 |  | 89.2 | 280 | 36.3 | 83.9 |
|  |  |  |  |  |  |  |  | 312 | 20.4 |  | 89.9 | 296 | 35.1 | 84.4 |
|  |  |  |  |  |  |  |  |  |  |  |  | 317 | 28.6 | 07.3 |
| $\begin{aligned} & k^{( }\left(h^{-1}\right) \\ & k\left(h^{-1}\right) \\ & \epsilon 1 / 2(h) \end{aligned}$ |  | $\begin{aligned} & 0.0159(0.665 \mathrm{~cm} / \mathrm{h}) \\ & 0.0234(0.979 \mathrm{~cm} / \mathrm{h}) \\ & 30 \end{aligned}$ |  |  | $\begin{aligned} & 0.0193(0.808 \mathrm{~cm} / \mathrm{h}) \\ & 0.0139(0.588 \mathrm{~cm} / \mathrm{h}) \end{aligned}$ |  |  | $\begin{gathered} 0.0176(0.728 \mathrm{~cm} / \mathrm{h}) \\ 0.0074(0.318 \mathrm{~cm} / \mathrm{h}) \\ 94 \end{gathered}$ |  |  |  | $\begin{gathered} 0.0164(0.686 \mathrm{~cm} / \mathrm{h}) \\ 0.0050(0.209 \mathrm{~cm} / \mathrm{h}) \\ 139 \end{gathered}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

[^11]- The cut-off point.


| Syathetic Cyanide solution |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { No } \mathrm{ALR} \\ \mathrm{UV} \end{gathered}$ |  |  |  |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { No AIR } \\ \text { No } \mathrm{UV} \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t(h)$ | $\mathrm{CN}_{\mathbf{T}}(\underline{m} / \mathrm{L})$ | $\underset{\text { Removed }}{x}$ | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{ms} / \mathrm{L})$ | $x$ <br> Removed | $t(h)$ | $\mathrm{CN}_{\mathbf{T}}(\mathrm{mg} / \mathrm{L})$ | $x$ <br> lemoved | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{m} / \mathrm{h})$ | 2 Ilemoved |
| HaCn | 0 | 189.0 | 0.0 | 0 | 190.0 | 0.0 | 0 | 200.0 | 0.0 | 0 | 196.0 | 0.0 |
|  | 18 | 61.0 | 67.7 | 18 | 140.0 | 26.3 | 6 | 113.7 | 43.1 | 6 | 140.3 | 28.4 |
|  | 25 | 33.0 | 82.5 | 25 | (168.0)* | 11.6 | 23 | 56.9 | 71.5 | 23 | 110.0 | 43.9 |
|  | 42 | 17.0 | 91.0 | 42 | 120.0 | 36.8 | 29 | 29.8 | 85.1 | 29 | 74.7 | 61.9 |
|  | 49 | 11.0 | 94.2 | 114 | 20.0 | 89.5 | 47 | 11.2 | 94.4 | 47 | 54.7 | 72.1 |
|  | 114 | 6.8 | 96.4 | 121 | 17.4 | 90.8 | 53 | 1.4 | 99.3 | 53 | 23.5 | 88.0 |
|  | 121 | 1.2 | 99.4 | 138 | 14.9 | 92.2 | 119 | 1.2 | 99.4 | 119 | 9.8 | 95.0 |
|  | 138 | 0.6 | 99.7 | 145 | 4.8 | 97.5 | 126 | 1.0 | 99.5 | 126 | 9.1 | 95.4 |
|  | 145 | 0.15 | 99.9 | 162 | 2.8 | 98.5 | 143 | 0.6 | 99.7 | 143 | 5.4 | 97.2 |
|  |  |  |  | 169 | 2.4 | 98.7 | 167 | 0.1 | 99.9 | 150 | 4.9 | 97.5 |
|  |  |  |  | 186 | 2.0 | 98.9 |  |  |  | 174 | 3.7 | 98.1 |
|  |  |  |  | 193 | 1.8 | 99.0 |  |  |  | 197 | 2.3 | 98.2 |
|  |  |  |  | 210 | 1.2 | 99.4 |  |  |  | 285 | 1.1 | 99.4 |
|  |  |  |  | 216 | 0.7 | 99.6 |  |  |  |  |  |  |
|  |  |  |  | 306 | 0.28 | 99.9 |  |  |  |  |  |  |
| $k_{0}\left(h^{-1}\right)$ | $0.0569(2.382 \mathrm{~cm} / \mathrm{h})$$0.0389(1.628 \mathrm{~cm} / \mathrm{h})$18 |  |  | $\begin{gathered} 0.0205(0.858 \mathrm{~cm} / \mathrm{h}) \\ 0.0253(1.059 \mathrm{~cm} / \mathrm{h}) \\ 27 \end{gathered}$ |  |  | $0.0597(2.499 \mathrm{~cm} / \mathrm{h})$$0.0394(1.649 \mathrm{~cm} / \mathrm{h})$18 |  |  | $\begin{aligned} & 0.0263(1.101 \mathrm{~cm} / \mathrm{h}) \\ & 0.0238(1.003 \mathrm{~cm} / \mathrm{h}) \\ & 29 \end{aligned}$ |  |  |
| $k\left(h^{-1}\right)$ |  |  |  |  |  |  |  |  |  |  |  |  |
| c $1 / 2$ ( h ) |  |  |  |  |  |  |  |  |  |  |  |  |

[^12]

| 8ynthetic <br> Cyanide <br> Solution | $\begin{aligned} & \mathbf{U}^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ |  |  | $\begin{gathered} 4^{\circ \circ} \mathrm{C} \\ \text { No AIR } \\ \text { WV } \end{gathered}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { No } \mathrm{WV} \end{gathered}$ |  |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { No UV } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t(h) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{ng} / \mathrm{L})$ | $\stackrel{X}{\text { Removed }}$ | t(h) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\begin{gathered} \mathbf{Z} \\ \text { Removed } \end{gathered}$ | th) | $\underset{T}{C N}(\boxed{ } / L)$ | Removed | $t(h)$ | $\underset{T}{C N}(-g / L)$ | Lemoved |
| $\mathrm{man}_{2} \mathrm{Cu}(\mathrm{CN})_{3}$ | 0 | 195.0 | 0.0 | 0 | 204.0 | 0.0 | 0 | 203.0 | 0.0 | 0 | 197.3 | 0.0 |
|  | 7 | 185.6 | 4.8 | 7 | 137.0 | 32.8 | 19 | (62.4) | 69.3 | 17 | 149.2 | 24.4 |
|  | 24 | 172.4 | 11.6 | 24 | 121.9 | 40.2 | 24 | 148.5 | 26.8 | 24 | 136.9 | 30.6 |
|  | 48 | 103.4 | 46.9 | 31 | 99.1 | 51.4 | 41 | 135.3 | 33.3 | 41 | 136.0 | 31.1 |
|  | 54 | 87.5 | 55.1 | 48 | 80.9 | 60.3 | 48 | 126.7 | 37.8 | 48 | 114.6 | 41.9 |
|  | 72 | 68.9 | 64.7 | 72 | 78.2 | 61.6 | 65 | 100.6 | 50.4 | 65 | 112.5 | 43.0 |
|  | 79 | 67.6 | 65.3 | 144 | 58.6 | 71.2 | 72 | 71.5 | 64.8 | 72 | 111.3 | 43.6 |
|  | 144 | 36.9 | 81.1 | 168 | 30.2 | 85.2 | 113 | 55.6 | 72.6 | 137 | 93.1 | 52.8 |
|  | 151 | 37.1 | 81.0 | 175 | 35.8 | 82.4 | 144 | 66.2 | 67.4 | 161 | 90.9 | 53.9 |
|  | 168 | 31.0 | 84.1 | 192 | 41.1 | 79.8 | 151 | 59.6 | 70.6 | 168 | 84.7 | 57.1 |
|  | 175 | 29.7 | 84.8 | 199 | 37.8 | 81.5 | 168 | 49.2 | 75.8 | 185 | 85.9 | 56.5 |
|  | 192 | (26.5) | 86.4 | 216 | 33.8 | 83.4 | 175 | 51.8 | 74.5 | 192 | 74.0 | 62.5 |
|  | 216 | 27.6 | 85.9 | 223 | 34.4 | 83.1 | 192 | 77.8 | 61.7 | 209 | 70.7 | 64.2 |
|  | 240 | 23.7 | 87.8 | 240 | 34.6 | 83.1 | 199 | 37.6 | 81.5 | 216 | 68.9 | 65.1 |
|  | 312. | 19.7 | 89.9 | 247 | 31.8 | 84.4 | 216 | 44.3 | 78.2 | 233 | 70.1 | 64.5 |
|  |  |  |  | 288 | 23.9 | 88.3 | 223 | 35.4 | 82.6 | 256 | 60.3 | 69.4 |
|  |  |  |  | 312 | 22.8 | 86.3 | 241 | 36.8 | 81.9 | 280 | 58.9 | 70.1 |
|  |  |  |  | 319 | 28.5 | 86.0 | 247 | 34.7 | 82.9 | 296 | 51.5 | 73.9 |
|  |  |  |  |  |  |  | 312 | 34.3 | 83.1 | 317 | 50.2 | 74.5 |
| $\begin{aligned} & k_{7}\left(h^{-1}\right) \\ & k_{1}\left(h^{-1}\right) \\ & t 1 / 2(h) \end{aligned}$ | $\begin{array}{r} 0.0148 \\ 0.0036 \\ 192 \end{array}$ | (0.62 cm/h) |  | $\begin{array}{cc} \hline 0.0174 & (0.73 \\ 0.0031 & \\ 220 & \end{array}$ |  | m/h) | $\begin{array}{r} 0.0126 \\ 0.0037 \\ 187 \end{array}$ | ( $0.53 \mathrm{~cm} / \mathrm{h}$ ) |  | $\begin{array}{r} 0.0073 \\ 0.0033 \\ 210 \end{array}$ | ( $0.30 \mathrm{~cm} / \mathrm{h}$ ) |  |

[^13]Table C.4. ciptanatial mesults for coppra-cyamme complex at $20^{\circ} \mathrm{C}$


* Values in parentheaie were not used for modelling purposes.
- The cut-off point.


| Synthetic Cyeaide solution | th) | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{UV} \end{aligned}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { no AIR } \\ \text { UV } \end{gathered}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \mathrm{AIR} \\ \text { MO } \mathrm{UV} \end{gathered}$ |  |  | $\begin{aligned} & 4^{\circ \circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { WO } \mathrm{UV} \end{aligned}$ | , |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{CN}_{\mathbf{T}}(\mathrm{mg} / \mathrm{L})$ | $\stackrel{\text { Z }}{\text { Removed }}$ | t(h) | $\mathrm{CN}_{\mathrm{T}}(\underline{\mathrm{E}} / \mathrm{L}$ ) | Removed | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\underset{\text { Removed }}{x}$ | t(h) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{ms} / \mathrm{h})$ | $\underset{\text { Removed }}{x}$ |
| $\mathrm{Ma}_{2} \mathrm{Za}(\mathrm{CH})_{4}$ | 0 | 197.0 | 0.0 | 0 | 190.0 | 0.0 | 0 | 195.0 | 0.0 | 0 | 164.2 | 0.0 |
|  | 7 | 188.3 | 4.4 | 7 | 148.0 | 22.1 | 19 | 140.7 | 27.8 | 17 | 158.9 | 3.2 |
|  | 24 | - 171.1 | 13.1 | 24 | 131.2 | 30.9 | 24 | (108.2) | 44.5 | 24 | 141.6 | 13.8 |
|  | 48 | 79.6 | 59.6 | 31 | 87.5 | 53.9 | 41 | 121.8 | 37.5 | 41 | 129.6 | 21.1 |
|  | 54 | 54.4 | 72.4 | 48 | 71.7 | 62.3 | 48 | 103.3 | 47.0 | 48 | 125.6 | 23.5 |
|  | 72 | 49.1 | 75.1 | 72 | 59.9 | 68.4 | 65 | 79.4 | 59.3 | 65 | 124.6 . | 24.1 |
|  | 79 | 37.1 | 81.1 | 144 | (27.6) | 85.5 | 72 | 58.3 | 70.1 | 72 | 100.0 | 39.1 |
|  | 144 | 9.0 | 95.4 | 168 | 27.8 | 85.3 | 113 | (47.7) | 75.5 | 137 | 84.1 | 48.8 |
|  | 151 | 8.5 | 95.7 | 175 | 20.0 | 89.5 | 144 | 58.3 | 70.1 | 144 | (68.2) | 58.5 |
|  | 168 | 8.2 | 95.8 | 192 | 16.9 | 91.1 | 151 | 57.0 | 70.8 | 161 | 72.7 | 55.7 |
|  | 175 | 5.6 | 97.2 | 199 | 15.9 | 91.6 | 168 | (24.6) | 87.4 | 168 | 71.6 | 56.4 |
|  | 192 | 3.9 | 98.0 | 216 | (16.4) | 91.4 | 175 | 31.1 | 84.0 | 185 | 69.2 | 57.9 |
|  | 216 | 3.8 | 98.0 | 223 | 13.9 | 92.7 | 192 | 29.3 | 85.0 | 192 | 69.2 | 57.9 |
|  | 240 | 2.9 | 98.5 | 240 | 11.9 | 93.7 | 199 | 27.0 | 86.1 | 209 | 66.3 | 59.6 |
|  | 312 | 2.6 | 98.7 | 247 | 7.3 | 96.2 | 216 | 23.2 | 88.1 | 216 | 50.5 | 69.2 |
|  |  |  |  | 288 | 1.3 | 96.2 | 223 | 22.5 | 88.5 | 233 | 50.1 | 69.5 |
|  |  |  |  | 312 | 7.3 | 96.2 | 241 | 20.4 | 89.5 | 256 | 44.9 | 72.7 |
|  |  |  |  | 319 | 6.4 | 96.6 | 247 | 18.4 | 90.6 | 280 | 43.5 | 73.5 |
|  |  |  |  |  |  |  | 312 | 12.6 | 93.5 | 296 | 42.1 | 74.4 |
|  |  |  |  |  |  |  |  |  |  | 317 | 33.8 | 79.4 |
| $k_{0}\left(h^{-1}\right)$ | 0.01873 ( $0.78 \mathrm{~cm} / \mathrm{h}$ ) |  |  | 0.01622 (0.68 cm/h) |  |  | 0.01517 (0.63 cm/h) |  |  | $0.00602(0.25 \mathrm{~cm} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.01366 |  |  | 0.0095 |  |  | 0.00682 |  |  | 0.00446 |  |  |
| t $1 / 2$ (b) | 51 |  |  | 73 |  |  | 102 |  |  | 155 |  |  |

* Values in parenthesie were not used for modelling purposen.
- The cut-off point.


|  | $20^{\circ} \mathrm{C}$ <br> AIR <br> UV |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { No } \mathrm{AIR} \\ \mathrm{UV} \end{gathered}$ |  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \text { No UV } \end{aligned}$ |  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { No UV } \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cyanide <br> Solution | t(h) | $\mathrm{CN}_{\mathrm{T}}$ (ng/L) | \% <br> Removed | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | \% <br> Removed | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{ng} / \mathrm{L})$ |  | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}$ ( $\mathrm{mg} / \mathrm{L}$ ) | Z <br> Removed |
| $\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}$ | 0 | 196.0 | 0.0 | 0 | 200.0 | 0.0 | 0 | 185.6 | 0.0 | 0 | 168.4 | 0.0 |
|  | 18 | 68.3 | 65.1 | 18 | 168.0 | 16.0 | 2 | 139.2 | 25.0 | 2 | (159.1) | 5.5 |
|  | 25 | 41.0 | 79.1 | 25 | 126.0 | 37.0 | 5 | 117.2 | 36.8 | 5 | 160.4 | 4.7 |
|  | 42 | 25.0 | 87.2 | 42 | 98.0 | 51.0 | 7 | 106.1 | 42.8 | 7 | 145.9 | 13.4 |
|  | 49 | 15.7 | 92.0 | 49 | 62.3 | 68.8 | 24 | 38.4 | 79.3 | 24 | 115.6 | 31.3 |
|  | 114 | 9.7 | 95.0 | 114 | 16.2 | 91.9 | 27 | 34.1 | 81.6 | 27 | 107.4 | 36.2 |
|  | 121 | 2.4 | 98.8 | 121 | 15.7 | 92.1 | 30.5 | 29.9 | 83.8 | 30.5 | (118.0) | 29.9 |
|  | 138 | 1.2 | 99.4 | 138 | 14.3 | 92.8 | 48 | (5.3) | 97.1 | 48 | 79.6 | 52.8 |
|  | 145 | 0.6 | 99.7 | 145 | 3.6 | 98.2 | 51 | 7.4 | 96.0 | 51 | 70.3 | 58.3 |
|  | 162 | 0.2 | 99.9 | 162 | 2.9 | 98.5 | 54.7 | 5.8 | 96.9 | 54.7 | 47.7 | 71.6 |
|  | 186 | 0.1 | 99.9 | 169 | 2.1 | 98.9 | 72 | . 8 | 99.6 | 72 | 45.3 | 73.1 |
|  |  |  |  | 186 | 2.0 | 99.0 | 75 | . 7 | 99.6 | 75 | 43.8 | 74.0 |
|  |  |  |  | 192 | 1.8 | 99.1 | 102.5 | . 6 | 99.7 | 78.5 | 32.9 | 80.5 |
|  |  |  |  | 210 | 1.2 | 99.4 |  |  |  | 96 | 31.6 | 81.3 |
|  |  |  |  | 216 | 1.4 | 99.3 |  |  |  | 102.5 | 26.5 | 84.2 |
|  |  |  |  | 281 | 0.6 | 99.7 |  |  |  | 168 | 10.3 | 93.9 |
|  |  |  |  | 289 | 0.1 | 99.9 |  |  |  | 174.5 | 8.2 | 95.1 |
|  |  |  |  |  |  |  |  |  |  | 192 | 5.0 | 97.0 |
|  |  |  |  |  |  |  |  |  |  | 198.5 | 3.3 | 98.0 |
|  |  |  |  |  |  |  |  |  |  | 216 | 2.1 | 98.7 |
|  |  |  |  |  |  |  |  |  |  | 240 | 1.3 | 99.2 |
| $k_{v}\left(h^{-1}\right)$ | 0.0494 | $4 \bigcirc 2.07$ | cri/h) | $0.02101(0.88 \mathrm{~cm} / \mathrm{h})$ |  |  | 0.0607 (2.54 cm/h) |  |  | $0.01884(0.79 \mathrm{~cm} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.0448 |  |  | 0.01815 |  |  | 0.0062 |  |  | $0.01944$ |  |  |
| t 1/2 ( h ) | 15 |  |  | 38 |  |  | 111 |  |  | 36 |  |  |

[^14]- The cut-off point.


| synthetic Cyanide solution | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \mathrm{VV} \end{aligned}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { No } \mathrm{AIR} \\ \mathrm{UV} \end{gathered}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { WO UV } \end{gathered}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { wo AIR } \\ \text { No } \mathrm{VV} \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t$ (h) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{BE} /$ / $)$ | $\stackrel{z}{\text { Removed }}$ | t ${ }^{\text {b }}$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{ng} / \mathrm{L})$ | 2 <br> Renoved | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\stackrel{z}{\text { Removed }}$ | $t(b)$ | $\mathrm{Cm}_{\mathrm{T}}(\mathrm{ng} / \mathrm{h})$ | $\begin{aligned} & \text { Z } \\ & \text { Lemoved } \end{aligned}$ |
| $\mathrm{He}_{2} \mathrm{HI}(\mathrm{CH})_{4}$ | 0 | 200.0 | 0.0 | 0 | 176.0 | 0.0 | 0 | 207.0 | 0.0 | 0 | 169.5 | 0.0 |
|  | 7 | 198.3 | 1.0 | 7 | 125.9 | 28.5 | 19 | (196.2) | 5.2 | 17 | 153.6 | 9.4 |
|  | 24 | 169.7 | 15.1 | 24 | 112.7 | 36.0 | 24 | 121.8 | 41.2 | 24 | 140.2 | 17.3 |
|  | 48 | 107.4 | 46.3 | 31 | 66.3 | 62.3 | 41 | 112.0 | 45.9 | 41 | 98.2 | 42.1 |
|  | 54 | 104.8 | 47.6 | 48 | 59.4 | 66.2 | 48 | 100.6 | 51.4 | 48 | 95.7 | 43.5 |
|  | 72 | (67.6) | 66.2 | 72 | 50.4 | 71.4 | 65 | 87.9 | 57.5 | 65 | 90.3 | 46.7 |
|  | 79 | 68.9 | 65.5 | 144 | 39.5 | 71.5 | 72 | 82.2 | 60.3 | 72 | 88.6 | 47.7 |
|  | 144 | 39.2 | 80.4 | 168 | 37.1 | 78.9 | 113 | 62.2 | 69.9 | 137 | 84.1 | 50.4 |
|  | 151 | 40.0 | 80.0 | 175 | 37.0 | 78.9 | 144 | 62.1 | 70.0 | 144 | (73.8) | 56.5 |
|  | 168 | 41.6 | 79.2 | 192 | 36.7 | 79.1 | 151 | (58.3) | 71.8 | 161 | 78.1 | 53.9 |
|  | 175 | 36.6 | 81.7 | 199 | 33.1 | 81.2 | 168 | 57.0 | 72.5 | 168 | (66.8) | 60.6 |
|  | 192 | 34.5 | 82.8 | 216 | 31.8 | 81.9 | 175 | 59.6 | 71.2 | 185 | 71.6 | 57.8 |
|  | 216 | (36.8) | 81.6 | 223 | 28.5 | 83.8 | 192 | 59.2 | 71.4 | 192 | 69.2 | 59.2 |
|  | 240 | 28.9 | 85.5 | 240 | 24.5 | 86.0 | 199 | 57.8 | 72.1 | 209 | (60.9) | 64.1 |
|  | 312 | 26.3 | 86.9 |  |  |  | 216 | 55.9 | 73.0 | 216 | 64.5 | 61.9 |
|  |  |  |  |  |  |  | 223 | 55.2 | 73.3 | 233 | (64.5) | 61.9 |
|  |  |  |  |  |  |  | 241 | 53.1 | 74.3 | 256 | 61.7 | 63.6 |
|  |  |  |  |  |  |  | 247 | 49.0 | 76.3 | 280 | 56.1 | 66.9 |
|  |  |  |  |  |  |  | 312 | 40.4 | 80.5 | 296 | 54.7 | 67.7 |
|  |  |  |  |  |  |  |  |  |  | 317 | 50.0 | 70.5 |
| $k_{0}\left(h^{-1}\right)$ | 0.01400 ( $0.59 \mathrm{~cm} / \mathrm{h}$ ) |  |  | $0.01633(0.68 \mathrm{~cm} / \mathrm{h})$ |  |  | $0.01000(0.42 \mathrm{~cm} / \mathrm{h})$ |  |  | $0.01014(0.42 \mathrm{~cm} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.00416 |  |  | 0.00406 |  |  | 0.002978 |  |  | 0.00269 |  |  |
| $t 1 / 2$ (h) | 167 |  |  | 171 |  |  | 233 |  |  | 258 |  |  |

[^15]

| Synthetic Cyanide solutioa |  | $20^{\circ} \mathrm{C}$ <br> AIR <br> UV |  |  |  |  |  | $20^{\circ} \mathrm{C}$ AIR NO UV |  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { No AIE } \\ & \text { NO UV } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t(h)$ | $\mathrm{CN}_{1}(\mathrm{BH} / \mathrm{L})$ | $\begin{aligned} & 2 \\ & \text { Removed } \end{aligned}$ | $t(h)$ | $\mathrm{CNH}_{T}(\mathrm{~ms} / \mathrm{h})$ | 7 lemoved | c(h) | $\mathrm{CN}_{\mathbf{T}}(\mathrm{m} / \mathrm{L} / \mathrm{L})$ | $\begin{gathered} X \\ \text { lemoved } \end{gathered}$ | th) | $\mathrm{CH}_{\mathrm{T}}(\mathrm{m} / \mathrm{h})$ |  |
| $\mathrm{Ma}_{2} \mathrm{HI}(\mathrm{CH})_{4}$ | 0 | 299.0 | 0.0 | 0 | 198.0 | 0.0 | 0 | 229.4 | 0.0 | 0 | 198.9 | 0.0 |
|  | 18 | 65.9 | 66.9 | 18 | 158.0 | 20.2 | 2 | 212.2 | 7.5 | 2 | 159.1 | 20.0 |
|  | 25 | 55.0 | 72.4 | 25 | 140.0 | 29.3 | 5 | 202.9 | 11.5 | 5 | 144.5 | 27.3 |
|  | 42 | 42.0 | 78.9 | 42 | 106.0 | 46.5 | 7 | 197.6 | 13.9 | 7 | 132.6 | 33.3 |
|  | 49 | 30.9 | 84.5 | 49 | 83.4 | 57.9 | 24 | (196.2) | 14.5 | 24 | 41.1 | 79.3 |
|  | 114 | 29.7 | 85.1 | 114 | 69.8 | 64.7 | 27 | 151.2 | 34.1 | 27 | 35.8 | 82.0 |
|  | 121 | (28.5) | 85.7 | 121 | $(49.8)$ | 74.8 | 30.5 | 143.2 | 37.6 | 30 | 31.6 | 84.1 |
|  | 138 | 28.6 | 85.6 | 138 | 49.8) | 74.8 | 48 | 116.7 | 49.1 | 48 | 30.0 | 84.9 |
|  | 145 | 28.4 | 85.7 | 145 | 39.0 | 80.3 | 51 | 110.6 | 51.8 | 51 | 29.4 | 85.2 |
|  | 162 | 28.0 | 85.9 | 162 | 37.5 | 81.1 | 55 | 104.2 | 54.6 | 54 | 29.2 | 85.3 |
|  | 210 | 26.6 | 86.6 | 169 | 37.0) | 81.3 | 75 | 85.4 | 62.8 | 72 | 28.2 | 85.8 |
|  | 289 | 25.6 | 87.1 | 186 | (37.0) | 81.3 | 78.5 | 84.9 | 63.0 | 75 | 27.9 | 85.9 |
|  |  |  |  | 192 | 37.2 | 81.2 | 102.5 | 72.4 | 68.4 | 78 | (27.9) | 85.9 |
|  |  |  |  | 210 | 36.8 | 81.4 | 168 | 43.0 | 81.3 | 96 | 27.8 | 86.0 |
|  |  |  |  | 216 | 36.0 | 81.8 | 174.5 | 40.1 | 82.5 | 102 | 27.3 | 86.3 |
|  |  |  |  | 282 | 35.0 | 82.3 | 192 | 39.3 | 82.9 | 168 | 27.2 | 86.3 |
|  |  |  |  | 289 | 34.2 | 82.7 | 198.5 | 39.2 | 82.9 | 174 | 27.0 | 86.4 |
|  |  |  |  | 30\% | 32.1 | 83.8 | 222.7 | 35.0 | 84.7 | 192 | 26.0 | 86.9 |
|  |  |  |  |  |  |  | 240 | (35.0) | 84.7 | 198 | 25.7 | 87.1 |
|  |  |  |  |  |  |  | 252 | 33.9 | 85.2 | 216 | 24.9 | 87.5 |
| $k_{*}\left(h^{-1}\right)$ | 0.03480 ( $1.46 \mathrm{~cm} / \mathrm{h}$ ) |  |  | 0.01713 (0.72 cm/h) |  |  | $0.01264(0.53 \mathrm{~cm} / \mathrm{h})$ |  |  | $0.06212(2.6 \mathrm{~cm} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.00082 |  |  | 0.001487 |  |  | 0.00268 |  |  | 0.000814 |  |  |
| t 1/2 (h) | 845 |  |  | 466 |  |  | 259 |  |  | 851 |  |  |

[^16]

| Synthetic <br> Cyanide <br> Solution |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \mathrm{AIR} \\ & \mathrm{UV} \end{aligned}$ |  |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { no AIR } \\ & \text { WV } \end{aligned}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { WO UV } \end{gathered}$ |  |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { Mo AIR } \\ & \text { NO } \mathrm{UV} \end{aligned}$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | th) | $\mathrm{Cl}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | 2 <br> Removed | $t(h)$ | $\mathrm{Cr}_{\mathrm{T}}(\mathrm{mg} / \mathrm{h})$ | 2 Removed | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\stackrel{z}{\text { Removed }}$ | $t(\mathrm{~h})$ |  | $\underset{i n}{x}$ |
| $\mathrm{K}_{3} \mathrm{Pe}(\mathrm{CN})_{6}$ | 0 | 193.0 | 0.0 | 0 | 183.0 | 0.0 | 0 | 187.0 | 0.0 | 0 | 140.0 | 0.0 |
|  | 19 | 160.0 | 17.1 | 17 | 150.0 | 18.0 | 24 | 138.0 | 26.2 | 10 | 108.0 | 22.9 |
|  | 24 | 155.0 | 19.7 | 24 | 149.0 | 18.6 | 48 | 66.0 | 64.7 | 24 | 62.0 | 55.7 |
|  | 41 | 143.0 | 25.9 | 41 | 145.0 | 21.0 | 72 | 57.3 | 69.4 | 40 | 54.0 | 61.4 |
|  | 48 | 133.0 | 31.1 | 48 | 144.0 | 21.3 | 96 | 46.0 | 75.4 | $48^{\circ}$ | 50.0 | 64.3 |
|  | 65 | 120.0 | 37.8 | 72 | 125.0 | 31.7 | 168 | 34.8 | 81.4 | 60 | 42.0 | 70.0 |
|  | 72 | 116.0 | 39.9 | 137 | 85.2 | 53.4 | 192 | 33.3 | 82.2 | 72 | 34.0 | 75.7 |
|  | 113 | 76.6 | 60.3 | 144 | 80.6 | 55.9 | 216 | 33.0 | 82.3 | 96 | 33.0 | 76.4 |
|  | 144 | 63.3 | 67.2 | 161 | 72.9 | 60.2 | 240 | 32.8 | 82.5 | 168 | 32.0 | 77.1 |
|  | 151 | 62.6 | 67.6 | 168 | 72.6 | 60.3 | 264 | 30.4 | 83.7 | 192 | 29.7 | 78.8 |
|  | 168 | 55.0 | 71.5 | 185 | 66.2 | 63.8 |  |  |  | 216 | 31.0 | 77.9 |
|  | 175 | 54.0 | 72.0 | 192 | 65.3 | 64.3 |  |  |  | 240 | 30.0 | 78.6 |
|  | 192 | 48.6 | 74.8 | 209 | (58.9) | 67.8 |  |  |  | 264 | 29.0 | 79.3 |
|  | 199 | 46.5 | 75.9 | 216 | 61.1 | 66.6 |  |  |  |  |  |  |
|  | 216 | 43.9 | 77.2 | 233 | 56.6 | 69.1 |  |  |  |  |  |  |
|  | 223 | 42.1 | 78.2 | 256 | 51.5 | 71.8 |  |  |  |  |  |  |
|  | 241 | 38.4 | 80.1 | 280 | 48.0 | 73.8 |  |  |  |  |  |  |
|  | 247 | 37.1 | 80.8 | 296 | 43.2 | 76.4 |  |  |  |  |  |  |
|  | 312 | 27.8 | 85.6 | 317 | 39.7 | 78.3 |  |  |  |  |  |  |
| $k_{0}\left(h^{-1}\right)$ | $0.00682(0.28 \mathrm{~cm} / \mathrm{h})$ |  |  | 0.00915 (0.38 cm/h) |  |  | 0.01535 ( $0.64 \mathrm{~cm} / \mathrm{h}$ ) |  |  | 0.01527 (0.64 cm/h) |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.00510 |  |  | 0.00399 |  |  | 0.001189 |  |  | 0.00074 |  |  |
| t $1 / 2$ ( h ) | 136 |  |  | 174 |  |  | 583 |  |  | 937 |  |  |

[^17]

| Synthetic Cyanide solution |  | $20^{\circ} \mathrm{C}$ <br> AIR <br> UV |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { wo AIR } \\ \text { UV } \end{gathered}$ |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { No } \mathrm{UV} \end{gathered}$ |  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { mo AIn } \\ & \text { No UV } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t(h)$ | $\mathrm{CM}_{\mathbf{T}}\left(\mathrm{ng}_{8} / \mathrm{L}\right)$ | $\stackrel{z}{\text { Removed }}$ | t ${ }^{\text {h }}$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} /$ ) | $\stackrel{X}{\text { Removed }}$ | $t(h)$ | $\mathrm{CN}_{\mathbf{T}}(\mathrm{Og} / \mathrm{L})$ | $\stackrel{\pi}{\text { Removed }}$ | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{m} / \mathrm{h})$ | $\stackrel{x}{x^{-}}$ |
| $\mathrm{X}_{3} \mathrm{Fa}(\mathrm{CH})_{6}$ | 0 | 183.0 | 0.0 | 0 | 183.0 | 0.0 | 0 | 201.0 | 0.0 | 0 | 196.0 | 0.0 |
|  | 18 | 49.8 | 72.8 | 18 | 130.0 | 29.0 | 7 | 190.0 | 5.5 | 7 | 184.0 | 6.1 |
|  | 25 | 37.9 | 79.3 | 25 | 94.1 | 48.6 | 24 | 165.0 | 17.9 | 24 | 150.0 | 23.5 |
|  | 42 | 24.8 | 86.4 | 42 | 69.2 | 62.2 | 48 | 134.0 | 33.3 | 31 | 130.0 | 33.7 |
|  | 49 | 24.7 | 86.5 | 49 | 62.4 | 65.9 | 54 | 132.0 | 34.3 | 48 | 97.0 | 50.5 |
|  | 114 | (18.3) | 90.0 | 114 | 26.2 | 85.7 | 72 | 85.8 | 57.3 | 72 | 80.9 | 58.7 |
|  | 121 | 18.8 | 89.7 | 121 | 24.5 | 86.6 | 79 | 84.8 | 57.8 | 144 | 53.4 | 72.8 |
|  | 138 | 16.4 | 91.0 | 138 | 21.0 | 88.5 | 144 | 45.8 | 77.2 | 168 | 48.3 | 75.3 |
|  | 145 | 16.7 | 90.9 | 145 | 18.7 | 89.8 | 151 | 44.5 | 77.9 | 192 | 45.0 | 77.0 |
|  | 162 | 15.0 | 91.8 | 162 | 14.7 | 92.0 | 168 | 44.1 | 78.1 | 199 | 42.8 | 78.2 |
|  | 169 | 14.4 | 92.1 | 169 | 13.0 | 92.9 | 175 | (41.1) | 79.5 | 216 | 38.9 | 80.1 |
|  | 186 | 12.5 | 93.2 | 186 | 10.2 | 94.4 | 192 | 42.2 | 79.0 | 223 | (40.3) | 79.4 |
|  | 193 | 11.6 | 93.7 | 192 | 8.7 | 95.2 | 216 | 36.5 | 81.8 | 240 | 38.7 | 80.3 |
|  | 210 | 11.1 | 93.9 | 210 | 6.5 | 96.4 | 240 | (36.5) | 81.8 | 247 | 38.1 | 80.6 |
|  | 217 | 10.3 | 94.4 | 216 | 6.0 | 96.7 | 312 | 35.5 | 82.3 | 288 | 35.4 | 81.9 |
|  | 282 | 6.6 | 96.4 | 282 | 0.9 | 99.5 |  |  |  | 312 | 33.8 | 82.8 |
|  | 289 | 6.1 | 96.7 | 289 | 0.7 | 99.6 |  |  |  |  |  |  |
|  | 306 | 5.5 | 97.0 | 306 | 0.4 | 99.8 |  |  |  |  |  |  |
| $k_{4}\left(h^{-}+1\right)$ | $0.03976(1.66 \mathrm{~cm} / \mathrm{h})$ |  |  | 0.02263 (0.95 cm/h) |  |  | $0.01042(0.44 \mathrm{~cm} / \mathrm{h})$ |  |  | 0.01306 ( $0.55 \mathrm{~cm} / \mathrm{h}$ ) |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.00679 |  |  | 0.0222 |  |  | 0.00163 |  |  | 0.002 |  |  |
| $t 1 / 2$ (h) | 102 |  |  | 31 |  |  | 425 |  | 262 |  |  |  |

- Values in parenthesis were not used for modelling purposes.
- The cut-off point.



[^18]

|  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \mathrm{ALR} \\ & \mathrm{UV} \\ & \hline \end{aligned}$ |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { NO AIR } \\ \text { UV } \\ \hline \end{gathered}$ |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { wo UV } \end{gathered}$ |  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { MO } \mathrm{UV} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Synthetic <br> Cyanide <br> solution | t(h) | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\stackrel{X}{\text { Ranoved }}$ | th) | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\stackrel{X}{\text { Renoved }}$ | t(h) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\underset{\text { temoved }}{X}$ | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\pi$ lenoved |
| Low Mix | 0 | 188.0 | 0.0 | 0 | 199.0 | 0.0 | 0 | 200.0 | 0.0 | 0 | 198.0 | 0.0 |
|  | 18 | 55.3 | 70.6 | 18 | 147.0 | 26.1 | 7 | 197.0 | 1.5 | 7 | 187.0 | 5.6 |
|  | 25 | 39.3 | 79.1 | 25 | 129.0 | 35.2 | 24 | 147.0 | 26.5 | 24 | 181.0 | 8.6 |
|  | 42 | 18.9 | 89.0 | 42 | 74.1 | 62.8 | 48 | 108.0 | 46.0 | 31 | 122.0 | 38.4 |
|  | 49 | 15.5 | 91.8 | 49 | 67.5 | 66.1 | 54 | 93.2 | 53.4 | 48 | 79.4 | 59.9 |
|  | 114 | 8.7 | 95.4 | 114 | 19.5 | 90.2 | 72 | 66.8 | 66.6 | 72 | 58.3 | 70.6 |
|  | 121 | 7.6 | 95.9 | 121 | 17.5 | 91.2 | 79 | 62.1 | 68.9 | 144 | 28.2 | 85.8 |
|  | 138 | 6.4 | 96.6 | 138 | 14.1 | 92.9 | 144 | 23.4 | 88.3 | 168 | 23.0 | 88.4 |
|  | 145 | 6.2 | 96.7 | 145 | 13.2 | 93.4 | 151 | (23.8) | 88.1 | 192 | 19.0 | 90.4 |
|  | 162 | (5.1) | 97.3 | 162 | 11.3 | 94.3 | 168 | 19.4 | 90.3 | 199 | 18.2 | 90.8 |
|  | 169 | 5.5 | 97.1 | 169 | 10.6 | 94.7 | 175 | 17.4 | 91.3 | 216 | 16.3 | 91.8 |
|  | 184 | 4.6 | 97.5 | 186 | 9.5 | 95.2 | 192 | 17.3 | 91.3 | 223 | 15.7 | 92.1 |
|  | 193 | (3.9) | 97.9 | 192 | 8.7 | 95.6 | 216 | 14.7 | 92.6 | 240 | 15.1 | 92.4 |
|  | 210 | 4.5 | 97.6 | 210 | (9.5) | 95.2 | 240 | 12.8 | 93.6 | 247 | 14.4 | 92.7 |
|  | 217 | 4.3 | 97.7 | 216 | 7.5 | 96.2 | 312 | 10.4 | 94.8 | 288 | 11.8 | 94.0 |
|  | 282 | 2.3 | 98.8 | 282 | 6.2 | 96.9 |  |  |  | 312 | 10.5 | 94.7 |
|  | 289 | 2.3 | 98.8 | 289 | 6.1 | 96.9 |  |  |  |  |  |  |
|  | 306 | 1.8 | 99.0 | 306 | 5.6 | 97.2 |  |  |  |  |  |  |
| $k_{0}\left(h^{-1}\right)$ | 0.05039 (2.11 cm/h) |  |  | 0.02336 (0.98 cm/h) |  |  | $0.01532(0.64 \mathrm{~cm} / \mathrm{h})$ |  |  | $0.01788(0.75 \mathrm{~cm} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.00749 |  |  | 0.00599 |  |  | 0.00468 |  |  | 0.00562 |  |  |
| t $1 / 2$ (h) | 92 |  |  | 116 |  |  | 148 |  |  | 123 |  |  |

* Values in parenthenif were not used for modelling purposes.
- The cut-off point.


| Synthetic Cyanide Solution |  | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \mathrm{IIR}_{\mathrm{UV}} \end{aligned}$ |  |  | $\begin{aligned} & 4^{4 \circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { UV } \end{aligned}$ |  |  | $\begin{gathered} 4^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { HO } \mathrm{UV} \end{gathered}$ |  |  | $\begin{aligned} & 4^{\circ \circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { NO } \mathrm{OV} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $t(\mathrm{~h})$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | 2 Removed | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | Renoved | $t(h)$ | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $\pi$ <br> Removed | $t(b)$ | $\mathrm{CN}_{\mathbf{T}}(\mathrm{m} / \mathrm{L})$ | $x$ Renoved |
| High Mix | 0 | 180.0 | 0.0 | 0 | 192.0 | 0.0 | 0 | 198.0 | 0.0 | 0 | 198.0 | 0.0 |
|  | 7 | 175.0 | 2.8 | 17 | 163.0 | 15.1 | 19 | 185.0 | 6.6 | 18 | 181.0 | 8.6 |
|  | 24 | 156.0 | 13.3 | 24 | (153.0) | 20.3 | 24 | 175.0 | 11.6 | 25 | 175.0 | 11.6 |
|  | 31 | 148.0 | 17.8 | 41 | 165.0 | 14.1 | 41 | (158.0) | 20.2 | 42 | 164.0 | 17.2 |
|  | 48 | 135.0 | 25.0 | 48 | 152.0 | 20.8 | 48 | 160.0 | 19.2 | 49 | 155.0 | 21.7 |
|  | 72 | 115.0 | 36.1 | 65 | 147.0 | 23.4 | 65 | 150.0 | 24.2 | 114 | 138.0 | 30.3 |
|  | 144 | 93.0 | 48.3 | 72 | 140.0) | 27.1 | 72 | (150.0) | 24.2 | 121 | 139.0 | 29.8 |
|  | 168 | 84.7 | 52.9 | 137 | 125.0 | 34.9 | 113 | 127.0 | 35.9 | 138 | 132.0 | 33.3 |
|  | 192 | 81.8 | 54.6 | 144 | 123.0 | 35.9 | 144 | (120.0) | 39.4 | 145 | 133.0 | 32.8 |
|  | 199 | 76.8 | 57.3 | 161 | 119.0 | 38.0 | 151 | 125.0 | 36.9 | 162 | (134.0) | 32.3 |
|  | 216 | 74.5 | 58.6 | 168 | 117.0 | 39.1 | 168 | 117.0 | 40.9 | 169 | 126.0 | 36.4 |
|  | 223 | (76.3) | 57.6 | 185 | 112.0 | 41.7 | 175 | 99.9 | 49.5 | 186 | (126.0) | 36.4 |
|  | 240 | (77.7) | 56.8 | 192 | (115.0) | 40.1 | 192 | 98.0 | 50.5 | 192 | 120.0 | 39.4 |
|  | 247 | 74.3 | 58.7 | 209 | 109.0 | 43.2 | 199 | 96.7 | 51.2 | 210 | (120.0) | 39.4 |
|  | 288 | 71.4 | 60.3 | 216 | 92.7 | 51.7 | 216 | (94.0) | 52.5 | 216 | 93.0 | 53.0 |
|  | 312 | 68.7 | 61.8 | 233 | 91.0 | 52.6 | 223 | 95.4 | 51.8 | 282 | 82.2 | 58.5 |
|  |  |  |  | 256 | 89.9 | 53.2 | 241 | 92.4 | 53.3 | 289 | 81.1 | 59.0 |
|  |  |  |  | 280 | 88.8 | 53.7 | 247 | 89.4 | 54.8 | 306 | 80.9 | 59.1 |
|  |  |  |  | 296 | 83.6 | 56.5 | 312 | 83.8 | 57.7 |  |  |  |
|  |  |  |  | 317 | 83.1 | 56.7 |  |  |  |  |  |  |
| $k_{v}\left(h^{-1}\right)$ | 0.00628 (0.26 cm/h) |  |  | 0.00246 ( $0.10 \mathrm{~cm} / \mathrm{h}$ ) |  |  | $0.00391(0.16 \mathrm{~cm} / \mathrm{h})$ |  |  | $0.00231(0.09 \mathrm{ca} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | 0.00159 |  |  | 0.00112 |  |  | 0.00223 |  |  | 0.00167 |  |  |
| $t 1 / 2$ (h) | 435 |  |  | 619 |  |  | 311 |  |  | 415 |  |  |

[^19]

| Synthetic Cyanide Solution | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \mathrm{AIR} \\ & \mathrm{UV} \end{aligned}$ |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { No aIR } \\ \text { Uv } \end{gathered}$ |  |  | $\begin{gathered} 20^{\circ} \mathrm{C} \\ \text { AIR } \\ \text { Ho } \mathrm{UV} \end{gathered}$ |  |  | $20^{\circ} \mathrm{C}$ NO AIR NO UV |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | t(b) | $\mathrm{CN}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | 2 <br> Menoved | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | $x$ <br> Removed | $t(h)$ | $\mathrm{CH}_{\mathrm{T}}(\mathrm{mg} / \mathrm{L})$ | 2 <br> Removed | t(b) | CN ( $\mathrm{Eg} / \mathrm{L}$ ) | 2 lemoved |
| High Mix | 0 | 193.0 | 0.0 | 0 | 191.0 | 0.0 | 0 | 199.0 | 0.0 | 0 | 196.0 | 0.0 |
|  | 18 | 92.4 | 52.1 | 18 | 153.0 | 19.9 | 19 | 92.9 | 53.3 | 19 | 162.0 | 17.3 |
|  | 25 | 87.0 | 54.9 | 25 | 146.0 | 23.6 | $\underline{26}$ | 81.0 | 59.3 | $\underline{26}$ | 150.0 | 23.3 |
|  | 42 | 70.3 | 63.6 | 42 | 99.5 | 47.9 | 43 | (67.7) | 66.0 | 43 | 99.0 | 49.5 |
|  | 49 | 66.0 | 65.8 | 49 | 97.2 | 49.1 | 50 | 68.8 | 65.4 | 50 | 95.6 | 51.2 |
|  | 114 | (54.5) | 71.8 | 114 | 70.1 | 63.3 | 67 | 63.3 . | 68.2 | 67 | 87.4 | S5.4. |
|  | 121 | 56.0 | 70.9 | 121 | 70.6 | 63.0 | 74 | (58.4) | 70.6 | 74 | (76.9) | 60.6 |
|  | 138 | 53.5 | 72.3 | 138 | 66.7 | 65.1 | 91 | 59.3 | 70.2 | 91 | 77.9 | 60.3 |
|  | 145 | 53.9 | 72.1 | 145 | 63.2 | 66.9 | 98 | 54.4 | 72.7 | 98 | 75.1 | 61.7 |
|  | 162 | (46.9) | 75.7 | 162 | (63.9) | 66.5 | 163 | 48.8 | 75.5 | 163 | 65.7 | 66.5 |
|  | 169 | 50.9 | 73.6 | 169 | 63.0 | 67.0 | 170 | 48.1 | 75.8 | 170 | 64.1 | 67.3 |
|  | 186 | 48.8 | 74.7 | 186 | 59.0 | 69.1 | 187 | 45.5 | 77.1 | 187 | (62.1) | 68.3 |
|  | 193 | (43.6) | 71.4 | 192 | 58.2 | 69.5 | 194 | 45.6 | 77.1 | 194 | 62.1 | 68.3 |
|  | 210 | 45.2 | 76.6 | 210 | 56.9 | 70.2 | 211 | 43.4 | 78.2 | 211 | 59.5 | 69.6 |
|  | 217 | 43.6 | 77.4 | 216 | 55.4 | 71.0 | 218 | 42.2 | 78.8 | 218 | 58.7 | 70.0 |
|  | 282 | 36.9 | 80.9 | 282 | (52.0) | 72.8 | 235 | 40.3 | 79.7 | 235 | (59.5) | 69.6 |
|  | 289 | 35.2 | 81.8 | 289 | 53.0 | 72.2 | 242 | 38.7 | 80.5 | 242 | 58.2 | 70.3 |
|  | 306 | 33.2 | 82.8 | 306 | 50.2 | 73.7 | 266 | 38.4 | 80.7 | 266 | 57.4 | 70.7 |
| $k_{v}\left(h^{-1}\right)$ | $0.03366(1.41 \mathrm{~cm} / \mathrm{h})$ |  |  | 0.01106 (0.46 cm/h) |  |  | 0.03570 ( $1.49 \mathrm{~cm} / \mathrm{h}$ ) |  |  | $0.01023(0.43 \mathrm{~cm} / \mathrm{h})$ |  |  |
| $k_{1}\left(h^{-1}\right)$ | $0.00268$ |  |  | 0.00224 |  |  | 0.00264 |  |  | 0.00247 |  |  |
| t 1/2 (h) | 256 |  |  | 309 |  |  | 262 |  |  | 281 |  |  |

[^20]APPENDIX D
The Cut-off Point Deteraination
by Using Linear Regression
(Example: $\mathrm{NH}-\mathrm{CN}$ at $4^{\circ} \mathrm{C}$, $\mathrm{NO} A I R$, NO DV)

```
PROGRAN BACKRAT 73/171 OPT=1 FTN 5.1+538
```


-

THIS PROGRAM CALCULATES RATEISI FROF TOP TO SOTTOM
THIS PROGRAM CA
ANO VICE VERSA

READ*, N
READE:N N 2001 N

CHECK IF IT IS OK TO PROCEED
IF (IN.GTEO).AND. (N.LT. 100 )ITHEN
300 FORMAT (IX\&ROK TO PROCEEDE)
ENOIF

$\mathbf{C}$
$\mathbf{C}$
$\mathbf{C}$
CHECK IF NIS MITHIN SPFCIFIED DIMENSION RANGE
IF (Ne EOOO STOP
TFITV:
500
$\mathbf{C}$
$\mathbf{C}$
$\mathbf{C}$
READ IN GIVEN SETS OF DATA
READ*•T(I), CIII)
C

I HOLDS INDEPENOENT VARIABLES
C HOLDS DEPENTENT VARIABLES
I HOLDS NUMAER OF ELEMENTS IN ARR
ST IS SUM OF INDEPENOENT VARIABLES
SC IS SUM OF DEPENOENT VARIARLES
SC IS SUM OF DEPENDENT VARIARLES
STC IS SUM OF PRODUCT OF
SII IS SUM OF SQUARED I
SCC IS SUM OF SOUARE
SII IS SUM OF SQUAREO I
SCC IS SUM OF SQUARED C
A IS COFFFICIENT RFPRESENTINGSLOPE OF THESTRAIGHTGLINE LINE


| 107 108 109 110 111 111 112 113 114 114 | C | dependent variafle zChatz <br> $S R=0.0$ <br> SCHAT $=0.0$ <br> $\mathrm{RSS}=0.0$ 00 $30^{\circ}$ $\mathrm{I}=1, \mathrm{~N}$ <br> CHATII)=A:T(I)+A <br> SCHAT = SCHAT+CHAT(I) |
| :---: | :---: | :---: |
| 15 | ${ }_{c}^{\text {c }}$ | compute the predicted errors t.e.residuals |
| 118 118 118 1121 121 122 120 | 30 |  |
| (124 | ${ }_{c}^{C}$ | compute residual vartance |
| 26 |  | RV $=$ RSS SIGMAS ( ( |
| (128 | ${ }_{c}^{\text {c }}$ | COMPUTE StANDARd error of estimation |
| 131 |  | SEE = SQRTIRVI |
| 退34 | ${ }_{\mathbf{c}}^{\mathbf{c}}$ | write all calculated values |
| 135 <br> $\substack{136 \\ 137 \\ 13 \\ \hline}$ | 1100 |  <br> 100 40 |
| (138 |  | ( ${ }^{\text {NRITE }}$ |
| 140 | 40 |  |
| 142 143 144 14 | 1400 |  <br>  |
| , | 1500 |  |
| ${ }^{47}$ | $c^{5000}$ | COMNHME**H**********************************) |
| 150 |  |  |
| $\stackrel{152}{153}$ |  |  |
| 154 |  | TREV(I) $=$ T $\left(\begin{array}{l}\text { - }-T+1) ~\end{array}\right.$ |
| 155 <br> 156 | 50 | CREVEII $=$ C( $\mathrm{N}-\mathrm{T}+1)$ |
| (158 |  |  |
| 158 | 60 | CFLAG $=$ RFLAG 1 |
| 160 162 |  |  |



| 24.00000 140.20000 <br> 41.00000 98.20000 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SLOPE $A=-.013305600$ | INTERC. $\mathrm{A}=$ | . 064232109 | COPR= | -.94988 | RSS $=$ | . 01659 |
| AVERAGE RSS FOR 4POINTS | . 00415 |  |  |  |  |  |
| ******* ********F**F**************************************** |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 0.00000 169.50000 |  |  |  |  |  |  |
| 17.00000 |  |  |  |  |  |  |
| $\begin{array}{lr}24.00000 & 140.20000 \\ 41.00000 & 98.20000\end{array}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 48.0000095 .70000 |  |  |  |  |  |  |
| SLOPE $A=-.013263664$ | INTERC. ${ }^{\text {a }}$ = | . 063702194 | CORR $=$ | -. 96939 | RSS $=$ | . 01659 |
| AVERAGE RSS FOR 5POINTS = .00332 |  |  |  |  |  |  |
| *****************F*************************************** |  |  |  |  |  |  |
| ***************************** |  |  |  |  |  |  |
| 0.00000  <br> 17.00000 169.50000 <br> 153.60000  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| 24.0000041.00000 |  |  |  |  |  |  |
| 41.00000 | $9 \mathrm{9}$. |  |  |  |  |  |
| 48.0000095 .70000 |  |  |  |  |  |  |
| 65.0000090 .30000 |  |  |  |  |  |  |
| SLOPE $A=-.011260590$ | INTERC.E $=$ | . 026722353 | CORR $=$ | -. 96026 | RSS $=$ | . 02933 |
| RVERAGE RSS FOR GPOINTS $=$ | . 00489 |  |  |  |  |  |
| ******* ******************* | ***F****** | *********** | *********** |  |  |  |

-.95553 RSS $=\quad .03987$
-.82760 RSS $=\quad .17224$

|  |
| :---: |

出

8
$\stackrel{\circ}{0}$
$i$
$i$
169.50000
153.60000
140.20000
98.20000

AVERAGE RSS FOR BPOINTS $=.02153$

> average rss
（10080

人 人

INTERC．$B=.003168188 \quad$ CORR＝

cors＝

NTE ．． 140121133

| 46.00000 | 95.70000 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 65.00000 | 90.30000 |  |  |  |  |
| 72.00000 | 88.60000 |  |  |  |  |
| 137.00000 | 64．10000 |  |  |  |  |
| 161.00000 | 78.10000 |  |  |  |  |
| SLOPE $=-.004399819$ | INTERC．$B=-.186001467$ | CORR＝ | －． 83198 | RSS $=$ | ． 20212 |
| － |  |  |  |  |  |
| MVERAGE RSS FOR 9POINTS $=$ | ． 02246 |  |  |  |  |
|  |  | ＊＊＊＊＊＊ |  |  |  |
|  |  |  |  |  |  |
| 0.00000 | 169.50000 |  |  |  |  |
| 17.00000 | 153.60000 |  |  |  |  |
| 24.00000 | 140.20000 |  |  |  |  |
| 41.00000 | 98.20000 |  |  |  |  |
| 48.00000 | 95.70000 |  |  |  |  |
| 65.00000 | 90.30000 |  |  |  |  |
| 72.00000 | 86.60000 |  |  |  |  |
| 137.00000 | 84.10000 |  |  |  |  |
| $161.00000$ | 78．10000 |  |  |  |  |
| $185.00000$ | 71.60000 |  |  |  |  |
| SLOPE $=-.003988078$ | INTERC． $3=-.203061017$ | CORR＝ | －． 85661 | RSS $=$ | ． 21306 |
| AVERAGE PSS FORIOPOINTS＝ | ． 02131 |  |  |  |  |
| －\％＊＊＊＊＇＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊＊ | ＊＊＊＊も日＊＊ャ＊＊＊＊＊E＊＊＊＊＊＊＊ | ＊＊＊＊＊＊ |  |  |  |
|  |  |  |  |  |  |
| 0.00000 | 169.50000 |  |  |  |  |
| 17.00003 | 153.60000 |  |  |  |  |
| 24．00000 | 140．20000 |  |  |  |  |
| 41.00000 | 98.20000 |  |  |  |  |
| 48.00000 | 95.70001 |  |  |  |  |
| 65.00000 | 90.30000 |  |  |  |  |

```
 72.00000 88.60000
 137.00000
 192.00000
 71.60000
 SLOPE = -.003830974 INTERC.B= -. 209885813 CoRR= -.87738 RSS= . S1667
AVERAGE RSS FORIIPOINTS= .01970
```




```
 0.00000
 17.00000
 24.00000
 41.00000
 48.00000
 65.00000
 72.00000
 137.00000
 161.00000
 161.00000
 185.00000
 192.00000
 192.00000
 169.50000
 153.6000n
 153.6000n
 140.20000
 95.70001
 0.30000
 88.600001
 84.10000
 84.10000
 7%.10000
 71.60000
 69.20000
 SLOPE = -.003699990 INTERC.B= -. 216593397 CORR= ..89526 RSS= .22020
 AVERAGE RSS FORI2POINTS= .01835
```




```
\begin{tabular}{rr}
0.00000 & 169.50000 \\
17.00000 & 153.60000 \\
24.00000 & 140.20000 \\
41.00000 & 98.20000 \\
48.00000 & 95.70000
\end{tabular}
```

| 65.00000 | 90.30000 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 72.00000 | 88.60000 |  |  |  |  |
| 137.00000 | 84.10000 |  |  |  |  |
| 161.00000 | 78.10000 |  |  |  |  |
| 185.00000 | 71.60000 |  |  |  |  |
| 192.00000 | 69.20000 |  |  |  |  |
| 216.00000 | 64.50000 |  |  |  |  |
| 256.00000 | 61.70000 |  |  |  |  |
| SLOPE $A=-.003444885$ | INTERC. $8=-.232554613$ | CORR $=$ | -.90351 | RSS $=$ | . 23612 |
| aVERAGE RSS FORI3POINTS= | . 01816 |  |  |  |  |
| *****8* ******************** | ********************* | ******** |  |  |  |
| **************************** |  |  |  |  |  |
| 0.00000 | 169.50000 |  |  |  |  |
| 17.00000 | 153.60000 |  |  |  |  |
| 24.00000 | 140.20000 |  |  |  |  |
| 41.00000 | 98.20000 |  |  |  |  |
| 48.00000 | 95.70000 | ' |  |  |  |
| 65.00000 | 90.30000 |  |  |  |  |
| 72.00000 | 88.60000 |  |  |  |  |
| 137.00000 | 04.10000 |  |  |  |  |
| 161.00000 | 74.10000 |  |  |  |  |
| 185.00000 | 71.60000 |  |  |  |  |
| 192.00000 | 69.20007 |  |  |  |  |
| 216.00000 | 64.50000 |  |  |  |  |
| 256.00000 | 61.70000 |  |  | - |  |
| 280.00000 | 56.10000 |  |  |  |  |
| SLOPE $A=-.003319224$ | INTERC. $8=-.241230645$ | CORR= | -. 91671 | RSS $=$ | .24205 |
| AVERAGE RSS FORITPOINTS $=$ | . 01729 |  |  |  |  |


0.00000
17. 0000
17.00000
24.00000
41.00000
41.00000
48.00000 65.00000 72.00000 137.00000 161.00000 161.00000 185.00000 192.00000 216.00000 256.00000 280.00000 296.00000

```
54.70000
SLOPE \(A=-.003214217 \quad\) INTERC. \(8 x=.248979504 \quad\) CORR= \(\quad .92579 \quad\) RSS= 24849
AVERAGE RSS FORISPOINTS \(=.01657\)
```



BACKHARJS REGRESSION


| 317.00000169 .50000 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 296.00000153 .60000 |  |  |  |  |  |
| 280.00000140 .20000 |  |  |  |  |  |
| 256.0000098 .20000 |  |  |  |  |  |
| SLOPE $A=-.003324936$ | INTERC. $\mathrm{B}=-.161938551$ | CORR $=$ | -. 39052 | RSS $=$ | . 00042 |
| QVERAGE RSS FOR 4POINTS = .00011 |  |  |  |  |  |
| ***F******************************************************* |  |  |  |  |  |
|  |  |  |  |  |  |
| 317.00000169 .50000 |  |  |  |  |  |
| 296.00000153 .60000 |  |  |  |  |  |
| 280.00000140 .20000 |  |  |  |  |  |
| $\begin{array}{ll}256.00000 & 98.20000 \\ 216.00000\end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| SLOPE $A=-.002514362 \quad$ INTERC. $B=-.400437 \mathrm{A77}$ |  | CORR $=$ | -. 97037 | RSS $=$ | . 00237 |
| AVERAGE RSS FOR SPOINTS= | . 00047 |  |  |  |  |
| ******* ***************************FF\#*********************** |  |  |  |  |  |
| *******E******************** |  |  |  |  |  |
| 317.00000169 .50007 |  |  |  |  |  |
| 296.00000 |  |  |  |  |  |
| 280.00000140 .20090 |  |  |  |  |  |
| 256.00000 98.20000 |  |  |  |  |  |
| $\begin{array}{ll}216.00000 & 95.70000 \\ 192.00000\end{array}$ |  |  |  |  |  |
|  |  |  |  |  |  |
| SLOPE $A=-.002440198$ | INTERC. $8=-.421792879$ | CORR $=$ | -. 98266 | RSS $=$ | . 00244 |
| GVERAGE RSS FOR GPOINTS $=$ | . 00041 |  |  |  |  |



```
 317.00000 169.50000
 317.00000 169.50000
 296.00000
 280.00000
 256.000001
 216.00000
 192.00000
 185.00300
 153.60000
 140.20000
 98.20001
 98.20007
 95.70009
 90.30000
 8.60000
 SLOPE A = -.002485203 INTERC.B= -.408954217 -.98769 RORR= RSS= .00252
 MVERAGE RSS FOR PPOINTS= .00036
```




```
\begin{tabular}{lr}
317.00000 & 169.50000 \\
296.00000 & 153.60000 \\
280.00000 & 140.20000 \\
256.00000 & 98.20000 \\
216.00000 & 95.70000 \\
192.00000 & 90.30000 \\
185.00000 & 88.60000 \\
161.00000 & 84.10000
\end{tabular}
 SLOPE A = -.002599389 INTERC.B=-.377515955 CORR= -.98973 RSS= .00325
 AVERAGE RSS FOR OPOINTS= .00041
```



```
*************************F%%
 317.00000
 169.50000
 296
 296.00000
 280.00000
 256.0000%
 153.60000
 153.60000
 140.20000
 98.20000
 95.70000
```

응등응응응
 9.50
3.60
0.20
A. 20
5.70
0.30
8.60
4.10


317.00000
296.00000
280.00000
256.00000
216.00000
192.00000
185.00000
161.00000

| $\begin{array}{r} 137.00000 \\ 72.00000 \\ 65.00000 \end{array}$ | 78.10000 <br> 71.60000 <br> 69.20000 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SLOP: $A=.002330363$ |  | CORP= | -. 98595 | RSS= | . 01138 |
| AVERAGE PSS FORIIPOINTS $=$ | =.00103 |  |  |  |  |
| *********************F***F*F************************* |  |  |  |  |  |
| ***************************** |  |  |  |  |  |
| 317.00000 | 169.50000 |  |  |  |  |
| 296.00000 | 153.60000 |  |  |  |  |
| 280.00000 | 140.20000 |  |  |  |  |
| 256.00001 | 98.20000 |  |  |  |  |
| 216.00000 | 95.70000 |  |  |  |  |
| 192.00000 | 90.30000 |  |  |  |  |
| 185.00000 | 88.60000 |  |  |  |  |
| 161.00000 | 04.10000 |  |  |  |  |
| 137.00000 | 78.10000 |  |  |  |  |
| 72.00000 | 71.60000 |  |  |  |  |
| 65.00000 | 69.20000 |  |  |  |  |
| 46.0000064 .50000 |  |  |  |  |  |
| SLOPE $A=-.002305722$ | INTERC. $B=-.448954360$ | CORR $=$ | -. 98856 | RSS $=$ | . 01158 |
| AVERAGE RSS FORI2POINTS $=$ | . 00097 |  |  |  |  |
| ***************************************************** |  |  |  |  |  |
|  |  |  |  |  |  |
| 317.00000 | 169.50000 |  |  |  |  |
| 296.00000 | 153.60000 |  |  |  |  |
| 250.00000 | 140.20070 |  |  |  |  |
| 256.00000 | 98.20000 |  |  |  |  |
| 216.00000 | 95.70000 |  |  |  |  |
| 192.00000 | 90.3000789.60007 |  |  |  |  |
| 185.00000 |  |  |  |  |  |


| 161.00000 <br> 137.00000 <br> 72.00003 <br> 65.00000 <br> 48.00000 <br> 41.00000 | $\begin{aligned} & 84.10000 \\ & 78.10000 \\ & 71.60000 \\ & 69.20000 \\ & 64.50000 \\ & 61.70000 \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SLOPE $A=-002302936$ | INTERC. $B=-.449621037$ | CORR= | . .99046 | RSS $=$ | . 01159 |
| AVERAGE RSS FORI3POINTS= | . 00089 |  |  |  |  |
|  |  | ******* |  |  |  |
|  |  |  |  |  |  |
| 317.00000 | 169.50000 |  |  |  |  |
| 296.00000 | 153.60000 |  |  |  |  |
| 280.00000 | 140.20000 |  |  |  |  |
| 256.00000 | 98.20000 |  |  |  |  |
| 216.00000 | 95.70000 |  |  |  |  |
| 192.00000 | 90.30000 |  |  |  |  |
| 185.00500 | 88.60000 |  |  |  |  |
| 161.00000 | 84.10000 |  |  |  |  |
| 137.00000 | 78.10000 |  |  |  |  |
| 72.00000 | 71.60000 |  |  |  |  |
| $65.00000$ | $69.20000$ |  |  |  |  |
| $48.00000$ | $64.50000$ |  |  |  |  |
| 41.00000 | $61.70000$ |  |  |  |  |
| 24.00000 | 56.10000 |  |  |  |  |
| SLOPE $A=-.002631473$ | INTERC, $B=-373374317$ | CORR= | -. 95504 | RSS $=$ | . 08934 |
| AVERAGE RSS FORIHPOINTS= | . 00638 |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| $\begin{aligned} & 317.00000 \\ & 296.00000 \end{aligned}$ | $\begin{aligned} & 169.50000 \\ & 153.60000 \end{aligned}$ |  |  |  |  |



## Comparison of the Average Residual Sum of Squares



## APPENDIX E <br> Calculation of the Reaction Rate <br> Constant by Using Linear Regression



```
C
C
HRITE(*,780)
C 700 FORMAT{" SUM T",9X,"SUM C",9X,"SUM TC",9X,"SUM TT",9X,
 *sum CC".,
 DO 20 I=1,N
c
C ADD THE UALUES OF T ANC C TO THE ACCumulating ualuES
C IN SUMMATIONS
c
 ST=ST+T(I)
 SC=SC+C(I)
 STC=STC+(T(I)*C(I))
 STT=STT+(T(I)**R)
 SCC=SCC+(C(I)**2)
 continue
 COMPUTE COEFFICIENTS "A" AND "B"
 A1=STC-((ST*SC)/N)
 AZ=STT-((ST*ST)/N)
 A=A1/A2
 B1=SC-(A*ST)
 B=B1/N
c
C COMPUTE CORRELATION COEFFICIENT "CORR"
 A3=SCC-((SC*SC)/N)
 CORR=A1/(SQRT(A2)#SORT(A3))
c
C - USE THESE A AND E COEFFICIENTS TO CALCULATE PREDICTED
C DEPENDENT UARIABLE "CHAT"
C
 900 FORMAT(" CHAT",12X,"SCHAT",)
 SR=0.8
 SCHAT =0.0
 RSS=0.e
 DO 30 I=I,N
 CHAT(I)=A#T(I)+B
 SCHAT = SCHAT+CHAT (I)
 WRITE(*,18BO)CHAT(I),SCHAT
 FORMAT(1X,2F10.5.)
 c
C COMPUTE THE PREDICTED ERRORS I.E.RESIDUAI.S
C
 R(I)=C(I)-CHAT(I)
 SR=SR+R(I)
 RS(I)=R(I)**2
 RSS: RSS+RS(1)
 CONTINUE
C
 COMPUTE RESIDUAL UARIANCE
```

```
 RU=RSS/(N-2)
 SIGMAS=(A3-(A⿻三人1))/(N-2)
 HRITE(*,1050)RU,SIGMAS
 FORMAT(1X,"RU=",F10.5,5K,"SIGMAS=",F10.5,)
 1850
c
C COMPUTE ETANDARD ERROR OF ESTIMATION
c
SEE=SORT(RU)
C WRITE ALL CALCULATED UALUES
c
 110日 FORMAT(" TIME T IN HOURS ",I2X,"CONCENTRATION C ",
 * 3X,"RESIDUALS R=C-CHAT", 9X,"CHATM",BX,"CHATP",)
 DO 4B I=I,N
 WRITE(*,1208)T(I),C(I),R(I),CHATM(I),CHATP(I)
1200 FORMAT(BX,F18.5,20X,F18.5,15X,F10.5,5X,F18.5,5X,F10.5,)
 CALL PLOTPT (T(I),C(I),Z)
 CALL PLOTPT(T(I),CHAT(I), 2Q)
 CONT INLE
 WRITE(%,13日B)ST,SC,SR
130日 FORMAT(4X,"SUM OF T=",F10.5,4X,"SUM OF C=",F10.5,4X,"SUM OF
 * R=",F18.5/)
 WRITE (*,1400) A,B,CORR,RSS
1400 FORMATC/,5X,"SLOPE A=",F12.9,5X,"INTERC.B=",F12.9,5X,"CORR=
 * ".F10.5.5X, "RSS= ".F20.5, ()
 CALL OUTPLT
 STOP
 END
```

APPENDIX $\mathbf{F}$
Linear Regression and $95 \%$ Confidence Interval Calculations Performed on the Part of the Degradation Curve Attributed to Volatilization ( MaCN and $\mathrm{Cu}-\mathrm{CN}, \mathrm{Zn}-\mathrm{CN}, \mathrm{NH}-\mathrm{CN}, \mathrm{Fe}-\mathrm{CN}$ Complexes)

PROGRAM UOLCONF（IMPUT，OUTPUT，TAPE5＝IMPUT，TAPE6＝OUTPUT） REAL T（18日），Ci（18日），C（18a），CX（18日），CHAT（180），R（18日），RS（18a）． －PX（190），CHATM（100），CHATP（100）

## 1 CONTINUE

C
C THIS PROGRAM CALCULATES RATE（8）PLOTS THE GRAPH AND GIUES 95\％CONF．INTERUAL．
 WRITE（象， 280 ）
10．FORMAT（＂I INPUT MUMEER OF DATA POINTS＂）
READ ${ }^{\text {a }}$ N
HRITE（H，208）N
IF（N．GT．180）G0 T0 777
20：FORMAT（ $1 \mathrm{X},{ }^{\prime} \mathrm{N}={ }^{\prime}, \mathrm{I} 3$ ）
c
C
CHECK IF IT IS OK TO PROCEED
IF（（N．GT．E）．AND．（N．LT．180））THEN
WRITE（由，38日）
304 FORMAT（iX，＂OK TO PROCEED＂）
ENDIF
READ． ，CE
READ＊，TESTT
35：WRITE（事，350）TESTT

HRITE（H，488）
FORMAT（1X；＂CN CONC IN MGノL＂，SX，＂CXEC1／Ce＂，SK，＂NAT．LOG．OF CX＂，）
DO $10 \quad I=1, N$
C
C
CHECK IF M IS HITHIN EPECIFIED DIMENSION RANGE
IF（N．EQ．E）BTOP
If（（N．LT．G）．OR．（N．OT．1E日））THEN
HRITE（\％，500）

| 500 | FORMAT(1X:'N MUST EE GREATER THAN ZERO AND LESS THAN 100') ENDIF |
| :---: | :---: |
| c |  |
| c | READ IN GIUEN SETS Of data |
|  |  |
| c |  |
| c | T HOLDS INDEPENDENT UARIABLES |
| c | C HOLDS DEPENDENT UARIABLES |
| c | I HOLDS NUMBER OF ELEMENTS IN ARRAY |
| c | 8 IS IS SUM OF INDEPENDENT UARIABLES |
| c | SC is SUM OF DEPENDENT UARIABLES |
| c | STC is Sum of product of $T$ AND C |
| c | Stt is sum of squared t |
| c | SCC 15 SUM OF SQuared C |
| c | A 15 COEFFICIENT REPRESENTING SLOPE OF THE STRAIGHT LINE |
| c | - 15 COEFFICIENT REPRESENTING INTERCEPT OF THE STRAIGHT LINE |
| c | CORR IS CORRELATION COEFFICIENT |
| c | Chat represents predicted dependent uariable |
| c | SChat holds the sum of predicted dep. variables R HOLDS RESIDUALS |
| c | SR HOLDS SUM OF RESIDUALS |
| c | RS HOLDS SOUARED RESIDUALS |
| c | SRS HOLDS SUM OF SQUARED RESIDUALS |
| c | SEE REPRESENTS STANDARD ERROR OF ESTIMATION |
| c |  |
| C ${ }^{\text {c }}$ |  |
|  | $\mathbf{C X}(\mathrm{I})=\mathrm{Ci}(\mathrm{I}) / \mathrm{Ce}$ |
|  | $C(1)=A L O Q(C X(1))$ |
|  | WRITE(*,689) Ci(I), CX(I), C(I) |
|  | FORMAT (1X,F10.5,5X,F10.5,5X,F10.5,) |
|  | CONTINUE |
| $\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \end{aligned}$ | COMPUTE SUMMATIONS FOR LEAST SOUARS |
|  |  |
|  | ST $=0.0$ |
|  |  |
|  | $\begin{aligned} & 8 C=0.0 \\ & 8 T C=0 . \end{aligned}$ |



1000 FORMAT（1X，2F18．5．）
COMPUTE TME PREDICTED ERRORS I＇EERESIDUALS
R（I）＝C（I）－CHAT（I）
SR＝SR＋R（I）
RS（I）＝R（I）象 2
SRS：SRS＋RS（I）
CONTINUE
C
$\mathbf{C}$
$\mathbf{C}$
COMPUTE RESIDUAL UARIANCE
$R=S R S /(N-2)$
SIGMAS＝（A3－（A＊A1））$/(N-2)$
WRITE（\＃， 2 ESE）RU，SIGMAS
FORMAT（1X，＂RU＝＂，FIE．5，5K，＂SIGMAS＝＂，F18．5，）
COMPUTE STANDARD ERROR OF ESTIMATION
BEE＝8ORT（RU）
COMPUTE 95\％CONF．LIMITS FOR $\cap$
AA2＝SORT（A2）
ALPHAM＝A－（（TESTTHSEE）／AAZ）
ALPHAP $=A+($（TESTT摂SEE）／AA2）
$C$
$c$
$c$
COMPUTE 95\％CONF．LIMITS FOR D
AN2＝NBA2
BETAM＝B－（（TESTTBEEEBSORT（STT））／SORT（ANZ））

COMPUTE 93x CONF．LIMITE FOR CMAT
REUN＝ $1 / \mathrm{N}$
TMEAN＝ST $/ \mathrm{N}$
$C M E A N=S C / N$
DO $35 \quad I=1, N$
PX（I）＝（T（I）－TMEAN）韩 2
CHATM（I）＝CHAT（I）－（TESTT＊BEE SORT（REUN＋（PX（I）／AR）））

```
CHATP(I)=CHAT(I)+(TESTT*SEEmSORT(REUN+(PX(I)/AR)))
c
c
WRITE ALL CALCuLATED UALUES
HRITE(%,110日)
1100 FORMATC" TIME T IN HOURS ",SX."CONCENTRATION C ",
5X,"RESIDUALS R=C-CHAT",5X,"CHATM", 10X,"CHATP",)
DO 40 I=1,N
WRITE(#,1200)T(I),C(I),R(I),CHATM(I),CHATP(I)
1200 FORMAT(EX,F10.5,20X,F10.5,15X,F10.5,5X,F10.5,5X,F10.5,)
 CALL PLOTPT (T(1),CHAT(1),2)
 CALL PLOTPT(T(I),CHATM(I),2()
 CALL PLOTPT(T(I),CHATP(I),28)
 CONTINUE
 WRITE(*,1300,3T, SC,SR
1300 FORMATC4X,"SUM OF T=",F10.5,4X,"SUM OF C=",F10.5,4X,"SUM OF
R=",F10.5%)
WRITE (*,1400) A,B,CORR,SRS
1400 FORMATC/,5X,"SLOPE A=",F12.9,5X,"INTERC.B=",F12.9,5X,"CORR=
 * ",F10.5.5X, "SRS= ",F10.5,1)
 WRITE(*, 156e) ALPHAM, ALPHAP, BETAM, BETAP, TMEAN, CMEAN
1500 FORMAT (3X,"ALPHAM=",F12.9.5X,"ALPHAP ="',
 * F12.9,5X,"BETAM=",F12.9.5X,"BETAP=",F12.9.5X.
 + "TMEAN=",F5.2,5X,"CMEAN=",F5.2,O)
 GO TO 1
777 CONTINUE
 CALL OUTPLT
 StOP
END
```

APPENDIX G. 1
The Computer Progran for theAnalysis of $2^{3}$ Factorial Design Data -
Calculation of the Effects by Using
Matrix of Independent Variables and Equation ..... 6.1

PROGRAM FACT (INPUT, OUTPUT, FDAT, TAPE10=FDAT, TAPE $30=$ OUTPUT)


```
 10 IF(TEST(I)(L:L).EQ.EFFI(K)) GO TO 2R
 IF(L.EQ.B) GO TO 30
 L=L+1
 CO TO 10
 28 SUM = SUM + R(I)
 GO TO 40
 30 SUM = SUM - R(I)
 4B CONTINUE
 END = SUM/(NT/Z)
 50 WRITE (30,18Q日) EFFI(K),END
 DETERMINE THO-FACTOR INTERACTIONS
 NF1 = NF-1
 DO E6 N=1,NF1
 Ni = N+1
 DO B0 M = N1.NF
 E(I) = EFFI(N)
 E(Z) = EFFI(M)
 SUM = 0.
 DO }70\mathrm{ I=1,NT
 KT = 0
 DO 63 KL=1.2
 L = 1
60 IF(TEST(I)(L:L).EQ.E(KL)) GO TO 61
 IF(L.EQ.B) 60 T0 62
 L=L+1
 GO TO 68
61 KT = KT+1
 GO TO 63
62 KT = KT-1
63 CONTINUE
 IF(KT.EO.B) SUM = SUM - R(I)
 IF(KT.NE.O) SUM = SUM + R(I)
70 CONTINUE
 END=SUM/(NT/Z)
Q0 HRITE (38,2008) E(1),E(2),END
 DETERMINE THREE-FACTOR INTERACTIONS
 IF (TYPE.EO.'FRAC') GO TO 90
 NF1 = NF-1
 NF2 = NF-2
 DO 96 N=1,NFZ
 N1 =N&1
 DO 96 M=N1, NFI
 M1=M+1
 DO 96 MN=M1,NF
 E(1) = EFF&(N)
 E(2) = EFFI(M)
 E(3) = EFF1(MN)
 SUM = 0.
 DO 95 I=1,NT
 KT = 0
 DO 94 IJK=1.3
 L=1
E9 IF(TEST(I)(L:L).EQ.E(IJK)) GOTO 91
 IF(L.EO.5) 60 T0 93
 L =L+1
 60 TO E9
91 KT=KT+1
 60 TO 94
93 KT = KT-2
9 4 \text { CONTINUE}
 IF(KT.EO.3) SUM E SUM+R(I)
```

```
 IF(KT.EQ.-1) SUM = SUM+R(I)
 IF(KT.EQ.-3) SUM = SUM-R(I)
 IF(KT.EO.1) SUM = SUM-R(I)
 95 CONTINUE
 END=SUM/(NT/2)
 96 HRITE(30,3008) E(2),E(2),E(3),END
 9B CONTINUE
#
#
 500 FORMAT(ハ/ハ, 18X,"ANALYSIS OF FACTORIAL DESIGN DATA".////
 *,5x,"PROJECT NUMBER EI". 10X.
 *"EXPERIMENTAL SOLUTION ..NACN..."./1.5X,
 *"RESPONSE PARAMETER IS REACTION RATE CONSTANT K(2/H)")
*
 600 FORMATI//.2X,"THIS EXPERIMENT IS A FRACTIONAL FACTORIAL OF",
 + IX,I2, IX,"FACTORS",/ノ,5X,"TEST CODE",5X,"RESPONSE")
 780 FORMATC//, 2X,"THIS EXPERIMENT IS A FULL FACTORIAL OF".
 +2X,I2, IX,"FACTORS",/N,5X,"TEST CODE",SX,"RESPONSE")
*
 E日O FORMAT(/, 7X,AB, 3X,F1Q.6)
#
 908 FORMAT(///,5X, "EFFECTS")
*
 1800 FORMAT(/, 5X,A1, 1X," =", 1X,F10.6)
*
 2080 FORMAT(/, 5x, 2A1, 1x," ="*, 1x,F10.6)
*
 3000 FORMAT(/. 5X,3A1, 1X,""=", 1X,F18.6)
*
 STOP
 END
```


## APPENDIX G. 2

## Examples for the Calculation of the Effects

## G. 2 CAlCULATION OF THE EFFECTS

The following is an example calculation of the effects on nickel cyanide complex solution solved by using given matrix of independent variables and Equation 6.1 (applied in program FACT).

| I | A | B | C | AB | AC | BC | ABC | $\mathrm{Y} \times 10^{-3}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| + | - | - | - | + | + | + | - | 2.69 |
| + | + | - | - | - | - | + | + | 4.06 |
| + | - | + | - | - | + | - | + | 2.98 |
| + | + | + | - | + | - | - | - | 4.16 |
| + | - | - | + | + | - | - | + | 0.81 |
| + | + | - | + | - | + | - | - | 1.49 |
| + | - | + | + | - | - | + | - | 2.68 |
| + | + | + | + | + | + | + | + | 0.83 |

Effect of $A=\frac{(-2.69+4.06-2.98+4.16-0.81+1.49-2.68+0.83) \times 10^{-3}}{4}$
$=0.34 \times 10^{-3}$
Effect of $B=\frac{(-2.69-4.06+2.98+4.16-0.81-1.49+2.68+0.83) \times 10^{-3}}{4}$
$=0.40 \times 10^{-3}$
Effect of $C=\frac{(-2.69-4.06-2.98-4.16+0.81+1.49+2.68+0.83) \times 10^{-3}}{4}$ $=-2.02 \times 10^{-3}$

$$
\begin{aligned}
\text { Effect of } \mathrm{AB} & =\frac{(+2.69-4.06-2.98+4.16+0.81-1.49-2.68+0.83) \times 10^{-3}}{4} \\
& =-0.68 \times 10^{-3} \\
\text { Effect of } \mathrm{AC} & =\frac{(+2.69-4.06+2.98-4.16-0.81+1.49-2.68+0.83) \times 10^{-3}}{4} \\
& =0.21 \times 10^{-3} \\
\text { Effect of } \mathrm{ABC} & =\frac{(-2.69+4.06+2.98-4.16+0.81-1.49-2.68+0.83) \times 10^{-3}}{4} \\
& =-0.59 \times 10^{-3}
\end{aligned}
$$

APPENDIX G. 3
Half Normal Probability Plots

| PROBABILITY ( ${ }^{\text {( })}$ |  | AND EFFECTS ORDERED IN ASCENDING <br> - half normal probability plots |  |  |  | magnitude |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NaCN |  |  |  |  |  |  |  |
| Order Number 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | -6.78 | -3.10 | +0.58 | +2.90 | +5.68 | +8.80 | +18.04 |
| Identity of |  |  |  |  |  |  |  |
| effect | ac | abc | ab | bc | a | b | c |
| $\mathrm{P}=100(1-1 / 2) / 7$ | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure G.1. Half normal probability plot for NaCN

| $\mathrm{Na}_{2} \mathrm{Cu}(\mathrm{CN})_{3}$ |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order Number 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect xl0 | -2.60 | -2.44 | -0.185 | -0.175 | +6.39 | +6.85 | +7.92 |
| Identity of |  |  |  |  |  |  |  |
| effect | $a$ | ac | ab | abc | bc | b | c |
| $P(\%)$ | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure G.2. Half normal probability plot for copper cyanate complex

| $\mathrm{Na}_{2} \mathrm{Zn}(\mathrm{CN})_{4}$ |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| Order number 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | +1.78 | +4.97 | +6.33 | +9.55 | +10.39 | +12.33 | +13.52 |
| Identity of |  |  |  |  |  |  |  |
| effect | bc | b | ac | abc | ab | a | c |
| P(\%) | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure G.3. Half normal probability plot for zinc cyanide complex

| $\mathrm{Na}_{2} \mathrm{Ni}(\mathrm{CN})_{4}$ |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order number 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | -2.02 | -0.93 | -0.68 | -0.59 | +0.21 | +0.34 | +0.40 |
| Identity of |  |  |  |  |  |  |  |
| effect | c | ac | ab | abc | bc | a | b |
| $\mathrm{P}(\%)$ | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure G.4. Half normal probability plot for nickel cyanide complex

| $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |
| Order Number 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | -4.49 | -3.76 | -3.71 | -3.43 | +4.39 | +5.56 | +7.97 |
| Identity of |  |  |  |  |  |  |  |
| effect | bc | abc | b | ab | ac | c | a |
| P (\%) | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure G.5. Half normal probability plot for iron cyanide complex

| Low Mix |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order number 1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | -0.71 | -0.37 | -0.26 | +0.16 | +0.99 | +1.48 | +1.96 |
| Identity of effect | bc | ac | abc | c | b | ab | $a$ |
| P (\%) | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure 6.6. Half normal probability plot for low mix cyanide solution

| High Mix |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Order number <br> O | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Effect $\times 10^{3}$ | -0.135 | -0.12 | +0.025 | +0.12 | +0.185 | +0.27 | +1.08 |
| Identity of |  |  |  |  |  |  |  |
| effect | abc | a | ac | bc | b | ab | c |
| P(\%) | 7.14 | 21.4 | 35.7 | 50.0 | 64.3 | 78.6 | 92.9 |



Figure G.7. Half normal probability plot for high mix cyanide solution

## APPENDIX G. 4

Calculation of $95 \%$ Confidence Intervals fron the Half Normal Probability Plots
G.4. THE DETERMINATION OF SIGNIPICANT EFFECTS BY CALCULATING 95\% CONFIDENCE INTERVAL (CI)

NaCN (See Fig. G.1)

| Probability <br> Transform* | Effects |
| :---: | ---: |
| X | $\mathrm{Y} \times 10^{3}$ |
| 7.14 | -5.97 |
| 9.40 | -2.27 |
| 10.80 | 1.27 |
| 11.95 | 4.32 |
| 13.15 | 6.47 |
| 14.50 | 10.27 |

Mean $=2.35 \times 10^{-3}$
$\sigma=5.92 \times 10^{-3}$
0.025
$t_{5}=2.571$
Therefore $95 \%$ CI on random effects $=$ Mean $\pm t_{u}^{0.025} \sigma$
$=2.35 \times 10^{-3} \pm 2.571\left(5.92 \times 10^{-3}\right)$
$=\left(-12.9 \times 10^{-3}, 17.5 \times 10^{-3}\right)$
The temperature effect is significant at $95 \%$ confidence level.

[^21]
## $\mathrm{Cu}-\mathrm{CN}$ (See Fig. G.2)

| Probability <br> Transform | Effects |
| :---: | ---: |
| X | $\mathbf{Y} \times 10^{3}$ |
| 7.14 | -2.600 |
| 9.40 | -2.440 |
| 10.80 | -0.185 |
| 11.95 | -0.175 |

Mean $=-1.35 \times 10^{-3}$
$\sigma=1.353 \times 10^{-3}$
0.025
$t_{3}=3.182$

The $95 \%$ CI is $=-1.35 \times 10^{-3} \pm 3.182\left(1.353 \times 10^{-3}\right)$
$=\left(-5.65 \times 10^{-3}, 2.95 \times 10^{-3}\right)$
Therefore temperature, air and their interaction are significant at the 95\% confidence level.
Zn - CN (See Fig. G.3)
Probability Effects Transform
X ..... Y $\times 10^{3}$
7.14 ..... 1.78
9.40 ..... 4.97
10.80 ..... 6.33
11.95 ..... 9.55
13.15 ..... 10.39
14.50 ..... 12.33
Mean $=7.56 \times 10^{-3}$

$$
\sigma=3.91 \times 10^{-3}
$$

$$
t_{5}{ }^{0.025}=2.571
$$

$$
95 \% \mathrm{CI}=7.56 \times 10^{-3} \pm 2.571\left(3.91 \times 10^{-3}\right)
$$

$$
=\left(-2.49 \times 10^{-3}, 17.6 \times 10^{-3}\right)
$$

Therefore, none of the effects are significant at the $95 \%$ confidencelevel.

Ni - CN (See Fig. G.4)


95\% CI is $=-2.08 \times 10^{-3} \pm 2.571\left(5.89 \times 10^{-4}\right)$
$=\left(1.31 \times 10^{-3},-1.72 \times 10^{-3}\right)$
The effect of temperature is significant at $95 \%$ CI.
Fe - CN (See Fig. G.5)
Probability EffectsTransformX
$\mathrm{Y} \times 10^{3}$7.14

$$
-4.49
$$

$$
9.40 \quad-3.76
$$

10.80 ..... -3.71
11.95 ..... 3.43
Mean $=-3.85 \times 10^{-3}$

$$
\sigma=4.5 \times 10^{-4}
$$

$$
0.025
$$

$$
t_{3}=3.182
$$

$95 \% \mathrm{CI}=-3.85 \times 10^{-3} \pm 3.182\left(4.5 \times 10^{-4}\right)$

$$
=\left(-5.29 \times 10^{-3},-2.41 \times 10^{-3}\right)
$$

Therefore, UV, temperature and their interaction are significant at 95\% confidence level.

Low Mix (See Fig. G.6)

| Probability <br> Transform <br> $X$ | Effects |
| ---: | ---: | ---: |
| 7.14 | $Y \times 10^{3}$ |
| 9.40 | -0.71 |
| 10.80 | -0.37 |
| 11.95 | -0.26 |
| Mean $=$ | 0.16 |
| $\sigma=$ |  |
| $t_{3}^{0.0025}=$ |  |
|  |  |
|  |  |

$95 \% \mathrm{CI}=-0.295 \times 10^{-3} \pm 3.182\left(0.36 \times 10^{-3}\right)$
$=\left(-1.43 \times 10^{-3}, 0.84 \times 10^{-3}\right)$
Therefore $U V$, air and their interaction are significant at $95 \%$ confidence level.

High Mix (See Fig. G.7)

| Probability <br> Transform <br> $\mathbf{X}$ | Effects |
| :---: | ---: |
| 9.40 | $\mathbf{Y} \times 10^{3}$ |
| 10.80 | -0.12 |
| 11.95 | 0.02 |
| 13.15 | 0.12 |
| 14.50 | 0.18 |
|  | 0.27 |

$$
\begin{aligned}
\text { Mean } & =9.6 \times 10^{-5} \\
\sigma & =1.50 \times 10^{-4} \\
t_{4}^{0.025} & =2.776
\end{aligned}
$$

$95 \% \mathrm{CI}=9.6 \times 10^{-5} \pm 2.776\left(1.5 \times 10^{-4}\right)$
$=\left(0.51 \times 10^{-3},-0.32 \times 10^{-3}\right)$
Therefore, temperature is significant at $95 \%$ confidence level.

## APPENDIX G. 5

Backward Rlimination Procedure for the
Deternination of Significant Effects -
Linear Regression with Sequential P-tests

##  Progenh LJub? <br> 

program to facilltate backuind ellhinatlon proizdunt: refirinces:
1.) BACKWARD ELIMINATION YRUCEDURE: DRAPER \& SHITH P. 167-16F.
2.) SEDUENTIAL F-TESTS:- DkARER \& SHiliH, P. 7E-72.
3.) EXIRA SLM OF SGUARES: DAAPER \& SKITH, P, 67-68.
4.) LINEAK KEGRESSION USING NATKICLS:- WUAPLE o STIITH, P. 58-6..,
5.) SUM GF SUllakes fur Lack of FIT:- DRAFEF 1 SHITH, P, 3I-31.
6.) COMPUTATIONAL PROCLDURE FUK COKLLATIUN HATHIX:-

DRPAEP \& SHITH, P, 173-1\%
INFGRMATION TO EL GUFPLIED IN FILE AS FOLLOWING:
〈------ X MATRIX ---------> RESFOKAES:
$1 \times 11$ X12 Xi3 X14 ...XiK YI
$1 \times 21 \times 22 \times 23 \quad X_{2}^{24} \ldots X_{2}^{2} k \quad Y 2$
$1 \times 31 \times 32 \ldots . . . . . . . . \times 3 K$ K 3
$\cdot \quad \cdot \quad . \quad 1 \quad \cdot \quad$.

1 XN1 XN2 XN3 XN4 ...XNK TN

INSTRUCTIGN: FGR RUNNING PROGRAM:
RU, BAKLK,LU,N,MI,ME,NR WHERE:
luereaí lügical bit no.

$N=N O$. UF RLNS $=N O$. OF ROHS IN X HATRIX
NI=NU. OF CLIS. IN INFIT X-MATRIX.
NC=NO, OF COLS. IN CEWSTRUCTED X-MATRIX FOR:
NCYO: USER READS IN X-MATKLX AS A (NL, N) MATRIX 8 Then hassaces iniput mairix to ontain a (NC ni HATRIX: SEE PKOGF:Ah CODE, LINE 139 \& KELOH. HCLO : INPUT MATRCX IS USED AS IS.
MR=DETERMLNES TYFE OF OUTFUT AS FGLLOHS:
RiR>O : REPICATES: EXPANDED ANGVA TAGLE EXTRA SUf Of squages cailligationg.
NRR=0 : NO REPS: BASIC ARHVN TAFLE \& EXTRA SUAF DF SQIAFES CALCULATIOKZ.
RRCO : NO PEPS: BASIC ANONA TABLE ONLY.
(SEE DPAPER \& SMITH P. 62 FOK COHMENT ON REPLICATES)
USER NUST SUFPLY IN ADDITION:
1.) NaME OF FLLL CONTALNING $X$ MATRIX \& Y RESHClNSE VECTOK,
2.) HKOM TAELE: $\operatorname{t(n-nD}, 95 \%$ ), FOR b-UALUE CONFIDENCE LEVELS,
3.) FOR RUNS WHICH INCLUDE REPICAIES: SUH OF SQUAPES FLE FIKE ERRGR (SSPE) \& DEGREES OF FREEDUH ASSOLIATED WITH PUKE ERRDi (DFPE),

S.) FROH TAELES: F(1, n-nd,95\%), FOR TESTING PARTIAL F-VALUES.
TO LDAD BAKLH:
LOADR: Ll, © imilis
LGADR: LI, Bilibe
LOADR: RE, BEAKLM
LOADR: SL
LOALR: EN
IF SlLE OF INFī GATKIX 15 GREATEK THAN 22 FGGLS USE:
LOADE: OR, LB
initialize

DUUZLE FEECISION DOEQT

GIMENGIUN CHEAN (7),CSTO(7)
matices nelessany fup caraying lut limear regetssion:

DIMENSIUN X(E 7 . 7 ), XT ( 7,8$), X T X(7,7), X T Y(7,1)$
Y-bectur mancoulatiun: $Y(N, 1), Y T(L, N)$
DIMENSION Yik, 1), YT( 1,8 )

DCMEN'SION XC'( 8,7$)$, XCT $(7,8)$, XCTXC $(7,7), C O R(7,7)$

DCIENSION B(7,1), BT( $\{, 7$ )
FOR SUM OF SUUEGEL:
DGAENSIOH SEMK (1, 1), SSM(1, 1)
MLSCELLAKEUSS: $1 \mathrm{~K}(\mathrm{Ki}), \operatorname{IC}(N \mathrm{~L}), E(N, 1)$
DMENSIUN IR (7), IC(7), E(8, 1)
DIMENSION NAKE (5),1P(5),10KCi(144), 1Kif(50)


DIMENSION $X D(8,6), X D T(6,8), X D T X D(6,6), X D T Y(6,1)$

DINENSION BD (6, 1), BDT ( 4,6 )
FOR SUM OF SQUARES: SSHD $(1,1)$
DIMENSION SSMOL $(1,1)$
HISLELLANEUS: IDF(NE-1), IDC(NE-1)
DIHENSION IDR(6), IDC(6)
CALL Kifi 4 (IP)
$L U=1 P(1)$
$N=[P(2)$
$N 1=1 P(3)$
$H C=I P(4)$

山=́
MRITE(LL, 3I1)LU,LL, N,NI,NE,NK


READ IN ANID WRITE OUT MAME OF FILE:
WR1IE (LU, 300 )

READ (LU, 301 )NAHE
if lakint (3A2)
HRIEE(LL, 302)NAME

ofin file containing calirratiom data \& read in \& hrite out date:
CALL UPEN(INECL, IERR, MAME)
If (IERR.GE. DIGI TU 303
UPTE(LU,384)

60 102000
13 CONTINiUE [ $1=1$
15 continus
$\mathrm{IL}=50$
CALL READH (IMKCL, ILKR, IKiif, IL, LLEN)
IF(LEN.EQ.-S)GI TU 306
CAiL CODE
REATIBUF, $\{(X(1), J), J=1, N 1), Y(11)$
IF(II.GE.N)GO TG 306
11 $111+1$
to 10305
16 Cail CLISE (1DAKi, IENH)
clumert flows in limin to flows in L/SEC.
D0 $3 / 011=1, N$
cunvert clarifer inhlows
$x(11,3)=x(11,3) / 6.001$
CLARIFIER UNDERFLUTS:
$\mathrm{X}(11,4)=\mathrm{X}(11,4) / 6.0 \mathrm{li}$
370 CUNTINUE
IFINC.LT.OICO TO 391
bandivilation of gindut hatrix in qruer to exhimine interailons
DO $390 \mathrm{Il}=1, \mathrm{~N}$
D0 in7 $\times 1=3,5$
$k 2=k i+1$
$X(11, K i)=X(11, K 2)$
777 CONTINE
$X(11,6)=X(11,3) * x(11,5)$
D0 177 X $x=4,6$
$k_{2}=k_{1}+1$
$X(11, k 1)=X\left(11, K_{2}^{2}\right)$
777 CONTIMUE
90 CONTINUE
$\mathrm{NP}=\mathrm{EiL}$
6070724

```
91 MiP=NI
24 WRITE(LL,901)
```



```
 MFIE!LL,3IO!
```



```
 DO II I=1,N
 In}=1
```



```
 WRIIE(LL,996)(X(1,J),J=1,IM),Y(1)
 IF(NP.LE.10GGOTO I1
 UK11E(LL,723)(X(1.J).J=11.NH)
1 CONTINUE
90 Farint(/,1X,11(014,3,1X))
23 FOMMAT(5X,30(D10.3,1X))
 DEIERGINE COLIHN MEANE & STGNDAFD DENIATIONS:
 D0 i01 J=2,NF
 jJ=J-1
 CSMM=0,000
 D0 702 I=1,N
```



```
 CHEGm(JJ)=[SUM/N
01 cuminule
 YSLHi=0.000
 D0;03 [=1.1
```



```
 CMEAN(NP)=YSUM/l
 YMEAN=CMEAM(NP)
 #RITE UUT THE COLUNN MEANS:
 WFITE(LL,50)
```



```
 NX=Nip-1
 WKITE(LL,SI)(CHELN(J),J=1,NX),CHEAN(Gir)
1 FORTAT(11X,20(DIT,3,1X))
```



```
 DO i06 J=2,NP
 J]=\mp@code{-1}
 CSOM=0.ODO
 DO 767 I={.N
```



```
 CSTD(J)=DSGRT(CSIM/(N-1.0DO))
16 cuktinue
 TSIM=0.0DI
 DO 708 I=1,N
```



```
 YSTD=VSGMT(YSUH/(N-1,0DO))
 WKITE OUT THE CULUKN STAKIAM&D DEVIGTIONS:
 MRITE(LL,52)
```



```
 URITE(LL,51)(CSTD(J),J=2,NP),YSTD
 detekhine thanjfisit di X matrix
```

```
 00 13 [=1,N
 D012J=1,NH
12 XITS,I)=X(I,J!
13 CONIINIE
 HRITE(LL,991)
```



```
 DO 14 I=1,NP
14 WFITL(LL,990)(XT(1,J),J=1,N)
 CAMKYY GUT MATKIX NUITIPLICATION: XTX=XT*X
 CALL SHTT (XT, X,XTX,NY,N,N,NP,NH,NF)
 WRITE(LL,992)
```



```
 DO 15 i=1,NP
 15 WhilL(LL,990)(XTX(1,J),J=1,N:)
 LUHTGUIE & URITE OUT COKRELATION MATRIX:
 DO 8if I=1,N
 RXX=NP-1
 [f] 8j(J=1,NXX
 JJ= J+1
10 XC(1,J)=X(I,JJ)
 XC(I,NP)=Y(I)
11 CONTINUE
 HRITE(LL,812)
```



```
 [0 817 I=1.N
817 WklIE(LL,950)(XE(I,J),J=1,NF)
 DETEMMINE TRANSFOSE UF XC KÄTRIX:
 D0 813 I=1,N
 DO 814 5=1,N1
14 X[T(J,1)=XC(1,J)
13 CONIINUE
 HH1TE(LL,815)
815 1ORNAT(//,5X, "XLT MATKIX:")
 DO 8í I={,NF
B16 HENLE(LL,950)(XCT(1,J),J=1,N)
 LAKK̇Y OUT HATRIX r̈llT.: XCTXC=XLT$XC
 CALL MUT(XIT,XI,XLTXI,NF,N,N,NE,NP,NF)
 M\IE(LL,804)
```



```
 DO 800 I=1,NP
 CSUM1=N*I泣AN(1)
 D0 Bu1 J=1,NP
```



```
01 XCT)
 URITE(LL,990)(XCTXC(I,J),J=1,NP)
IO LUNIlNUE
 WRIIE(LL,805)
```



```
 DO 802 I=1,NP
 DO 843 J=1,NP
```

```
 IITER=XCTX[(1,I)&ALTXL(J,J)
(3) LUR(I,Si=X[TXC(I,J)/DSORT(ZITER)
 IN=10
 IF(N:.LT.IU)IN=Ni
 URITE(LL,B80)(COR(I,J),S=1,IM)
 If (Ni%.LE.10)CO TO 802
 WRITE(LL,881)(COR(I,J),J=11,NF!
```



```
 82 Fünat(5X,30(F5.2,5X))
02 CUNTINUE
 CakRy OUT INvELSION OF XIX HatklX:
 CALL GRSIN(XTX,NP,NF,DETA,IER,IR,ICI
 W:ITE(LL,994)
```



```
 DI 16 I=1,MP
 16 W:I位(LL,95%)(XTX(I,J), I= L,NM)
 ChRFI' UUR MATEXX HILIIPLICATIGN: XTY=XT*Y
 CAGL KITT(XT,Y,XTY,NT,N,N,1,NP,1)
 HRITE(LL,220)
20 f(%xintT(/L,5):"XIY HATHIX:*)
 D0 22& I=1,NP
221 WkiTE(LL,996)XTY(1,1)
 CAKRY OUT MATELX NULTIPLICATLUA: E=XTX-L*KTY
 CALL KUT(XIX,XYY,E,NT,NR,NF,1,NF,1)
 DEIERHINL TKANGFUSE OH E MATRIX:
 D(18I=1,NP
 便 Bl(1,I)=E(1,1)
 DEIERHINE TKANSTOSS OF Y MATRIX:
 DO 17 I=1,N
19 YI(1,I)=Y(1,1)
 CARKY OUT HATKIX NULIIPLICATION: SGITM=YTAI:
 SML MiT(YT,Y,SSYM,1,N,N,1,1,1)
 ##J=5SY%(1,I)
 BGS=N# (YMEAN**2!
 1SS=TSSj-KSS
 CAREY OUT MATRIX BULIIPLICATION: SSH-ETGATY
 CALL WIT(BT,XTY,SSH,1,NP,NF,1,1,1)
 Xh*;=SSM(1,1)-ESS
 CALCULATE RESIDUALE SUH UF SDUARES:
 RSG=TSSC-XHSS
 DH TU=N
 DHIC=N-1.000
 DFH=MP-1.0iij
 OFR=DFTC-DFF
 DF }\textrm{E}=1.0\textrm{ADO
 ẌrSM=XHSS/DFH
 XHisk=RSS/DFR
 F=XifSM/XMCHS
 MR11E(LU,783)
```



```
 READ(LU.:)STUDE
```

CAICULATE COMIDENEL LIMITS FDK W's: MR1TE(LL, 780)

DO $781 \mathrm{I}=1$, NP
$Z A=X 1 \times(1,1)$
ZR=STUDE:
BPLUS $=1(1,1)+Z 5$
$\mathrm{Bin}(\mathrm{NS}=\mathrm{B}(1,1)-2 \mathrm{~B}$
W:ITE(LL , 76ら)STUEE,ZL.2E

WRITE (LL, 782) H(I, 1), BHING, BPLLGS

81 CONTINUE
de TEkitine cuettacient of muitiple oftentingtion CHET $=(X H S 5 / T S S E) * 1.002$
MRITE (LL, 784)CHEL


DLTEKHINE PKLDICTED YS \& RESIDUALS:
CARRY of MATRIX MLLLIIPLICATION: E=X䡯
HKlTE(LL, 188 )

CALL $\operatorname{HUT}(X, B, E, N, M P, A P, 1, N, 1)$
DO $7861=1, N$
$R E S=Y(I)-E(I, 1)$
UR1TE (LL ,787)E(1.1), RES
87 FUKMAT ( $1 X, F 20,5,5 \times, F 20.51$
86 CUNTINLE
IF ( Ni . GT.0) 6010250
URITE(LL, 230)
 WRIE(LL, 231)


WKIE(LL , 232) XHSS, DFH, XHEM, F

WP (1E (LL , 233)RSS, DFR, XHSR

URITE(LL,54)B5S,DFE

HRCIE(LL,S5)TSSC, DFTL
5 Finint (//, 3X, "TOTAL (COMK)", $6 x,+10, b, 7 \%, 58,6)$
HRSTE(LL, 234)TSSU,DFTU

IF(NR.LT.0)EU TO 3000
6010264
50 CUNTINJE
REAI IN SUH OF SHUARLS FOR PUKE ERPGU: (KEPEATS) \& DEGRLES OF FREEDOKi: URSTE(LU,251)


```
 NEAD(LU, $)SSPE.DFPE
 SSLF=KSS. SSPE
 DFLT=D;R-DFPE
 XHSLF=SSLI /DF LH
 XHSF゙E=SSPE/DFPE
 FLF=XHSLF/XHSHE
 WRITE(LL,253)
```



```
 URITE(LL,254)
```



```
 (15X,-HS:",95X,'F:')
 WKITE{LL,770)XhSS,D+K,XMSSG,F
```



```
 HRITE(LL,77i)RSG,DFR,XHSR
```



```
 WR[TE(LL,772)SSLF,DHLF,XHSLF,FLF
```



```
 (10x,F10.5.10x,F10.5)
 W:1TE(LL,773)SSPE,DTHE,XTSPE
```



```
 WRITE(LL,774)ESS,DFE
```



```
 WRITE(LL:775)TSSC,DFTC
```



```
 WRITE゙(LL,776)TSSU,DFTU
```



```
64 CONTINUE
 OLTERMINE EXTRESGM OF SLUARES FOR EAG: E:
 WRITE(LL,402)
```



```
 Na
 00 20RO 1K=2,NH
 DETEKHINE DUSHIG NATRIX, XD, USED IN LXTRA SUIN DF SQIAPES CALCLLATIDKS:
 J5=1
 DJ 401 J={,NP
 If(J.E日,IK)JJ=JJ+1
 D[1 4i0 1l=1,M
00 XD(IL,J)=X([I,JJ)
 JJ=j]+1
O& CONTINUE
 #KITE(LL,403)
403 FORMAT(//,50X,:.........- XD HATRIX & YD VECTOR -...........)
 DO 404 I={,H
4B4 WKITE(LL,950)(XD(I,J),J=1,MPD),Y(1)
 DETEXIMINE TRANSPGSE OF XD HATRIX
 0045I=1,N
 DO 406 J={,NPD
16 XDT(J,I)=XD(1,J)
05 CONTIMUE
 MRIIE(LL,40%j
```

07 FORHAT(//.5X: ${ }^{2}$ XD TRAMSFOSE")
DO 418 I=1, Mri


HRITE(LL, 409)
409 tORMET(//,5X," XD l'klhe XI himilkl: ')
DO $410 \mathrm{I}=\mathrm{I}$, WPD

LARRY UUT INUERSION OF XDTXD MATRIX:
CALL GBSIN(XDTXU, NFD, NF D, DETA, IEK, ILE, IDEWRITE(LL ,4i1)

DO $412 \mathrm{I}=\mathrm{S}$, MII
412 Wrile(il 990 (XUTKI(1, J), $J=1, N P D)$
CAKA: OUT METKIX HUTLPLICATLEN: XITY=XDTAT
CALL KUT (XDT, Y, XDTY, $\mathrm{NPD}, \mathrm{N}, \mathrm{N}, \mathrm{I}, \mathrm{MPD}, 1$ )
HR1TE (LL.4i3)
13 funint $/ /, 5 \%$, XDTY NATRIX:"
DO $4 \mathrm{j} 4 \mathrm{l}=1$, NPD
414 URITE (LL , 990 )KOTY(I, 1)

CALL KUT (XDIXD, XDTY, BD, NPD, MTIL, NPJ, $1, N P D, 1)$
WEIIE (LL, 415)

DO $416 \mathrm{I}=1, \mathrm{NPD}$
416 Wrilt(LL,950) ELl, 1 )
DETEKALNE TRANGPISE UF BD MATRIX:
DU 417 I=1, MFT
17 $\operatorname{BDT}(1,1)=E D(I, 11$

LALL MUT (GDT, XDTY, STHD, 1, NPD, MPE $, 1,1,1$ )
X $\mathrm{HE} \mathrm{E} 5=5 \mathrm{SMD}(1,1)$-ESS

710 | Ukint
EXSS=XNOSS-XSDSS
Df $X S=1,000$
EXS $=E X S S / X M S E$
$I 1 I=1 K-1$
IF(III.GT. 1 ) 60 TU 119
W[TE(LL, 420)
("KS:", $1 / X,{ }^{\circ}$ F $^{\circ}$ )
19 WKiTE(LL, 4Z1)III, EXSS , DFXS, EXSẼ, FXS
21 ..... 

100 LUNTIMNE
000 CONTINUE

```
000 STOP
 END
```



```
 fRPLICIT DUHELE FRECISION (A-H,P-Z)
 DIMENSION A(IG,IA),IK(HA),IC(TGA)
 CCIN MATKIX lNigFillin
 IF(IAMHA) 1, 2,2
1 W!1TE(6,13)
 IER=1
 RETUFN
2IER=0
 DO 3 I=1,MA
 IR(I)=0
3 1C(1)=0
 DElA}=1
 DU 8 IJKL=1,MA
 CALL GHSYS(A,IA,IA,NA,NA,IK,IC,I,J)
 PIV=A(I,J)
 ULTA=PIV&I年TA
 IF(PIV.EQ.0.0) 60 TO 12
 lk(1)=J
 IC(S)=I
 PIV=1./P1V
 004k=1,Mk
4A(I,K)=A(I,K)N:IO
 A(I,J)=PIV
 D06 K={,M4
 If(K.EL.I) GO TO 6
 PiVI=A(K,j)
 DO S L={, HA
 5A(K,L)=A(K,L)-4IVI*&(I,L)
 A(k,N)=PIVI
 G CONTINUE
 rïvi=A(I,J)
 DO 7K=1,MA
7A(K,J)=-PIU*A(K,J)
 A(1,J)=P1VI
 3 CluTMNUE
 DU IS l=1,MA
 K=IC(I)
 k=1k(1)
 IF(K.EQ.I) GO TO 11
 DETA=-DETA
 DO 9 L={,MA
 TEMP=A(K,L)
 A(K,L)=A(I,L)
9 A(I,L)=TEMP
 bu If L=1,NH
```

TEMP $=A(L, M)$
$A(L, H)=A(L, I)$
IO A(L, I) =TEMP
LC(K) $=K$
$I R(K)=H$
is CORILNUE
RETURN
12 ILk:1
RETURN

就TRX
,
SUBKUHTINE GKSiY(A, 1A, JA, MA, NA, 1K, 1C, 1, J)
ImiLLIT DUGLE PRECISIUN (A-H, P-Z)
DCiGGLE PRLCIETGAT DAEG

THSS SUEk 15 Crile bi the kat INviksiuk SUEF
$1=6$
J:i
TEST $=0.0$
Dis $2 \mathrm{~K}=\mathrm{f}, \mathrm{KA}$
It (IR(K),NE, O) GOTO 2
DO 1 L=1, NA
(FIJC(L),NE,0) 60 101
$\dot{x}=[j A K S(4(K, L))$
[F(X.LT., IEST) GO TO 1
$1=1$
$J=\mathrm{L}$
TEST $=\mathrm{X}$.
1 CONTINUE
2 COntinge
RETURN
ERD
SUBKUUTINE ADD(A,B,C, $A, N, X)$
IHPLILIT DOUSLE PRECISION (A-H,P-I)
DIMENSION $A(K, N), Z(K, N), C(H, N)$
DO $1[=1, \mathrm{H}$
DUIJ=1,N
$1 \quad C(I, J)=A(I, J)+X \notin \mathbb{E}(I, J)$
KETURN
END
SUEkiUTINE MUT ( $A, H, C, H A, N 4, N B, N B, M E, M E)$
IAPLICIT DUUELE PRELISION (A-H, P-Z)

DO $1 \mathrm{~J}=1$, NB
DO E I=1, MA
SUR=0.
DO 3 K $=1$, M
$S U M=S U H+A(I, K) \neq E(K, J)$
3 CONilhuize
$\mathcal{L}(1,5)=S U$ H
2 CLONTMit
1 CONIINUE
RETURN
Eivi
SURGUTINE RUTS $(X, A, C, K, N)$
IMPLICIT DUUELE HKLLSS10N ( $4-H, P-2$ )
DIMENSIUN A(H, N), C (H, N)
DU $1 \mathrm{I}=\mathrm{I}, \mathrm{K}$
vo $1 J=1, N$
$1\left[(1, J)=X \mathrm{Kin}_{(1)}(\mathrm{J})\right.$
RETURN
ENij

Lil: $1 \quad L L=i . \quad N=8 \quad N I=7 \quad N[=-1 \quad N P=0$

FIIF CONTAININE CAIIRKATION DATA: SDO7

FILE CONTAINING CALIBRATION DATA:
******** LINEAP LEAST SDUARES *********


| . 1000401 | $\cdot .1000401$ | $-.1000+0 i$ | $-.1000+01$ | . 1000818 | $.1000+01$ | . $1060+01$ | . $5031-02$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .1095+0i | .1000+01 | $-.1000+01$ | -.1000+01 | $-.1005+01$ | -.1000+01 | .100iot 01 | .1390-01 |
| . $1000+01$ | $-.1000+01$ | .1000+01 | $-.1000+01$ | $\cdots 1000+01$ | .1080+01 | $-.1000+02$ | .7405-02 |
| .1000-01 | . $1000+01$ | .1000+01 | $-.1600+01$ | . $1000+01$ | $-.100 D+01$ | $-.1005+01$ | . 2340.01 |
| .1000+01 | $-.1000+01$ | $-.1000+01$ | . $10000+61$ | . $10000+81$ | -.1060+01 | $-.1000+01$ | .2380-01 |
| . 1008182 | . 1000 +01 | $-.1000+01$ | . $1000+01$ | -. $1008+81$ | .1000+01 | -. 1000001 | .2531-15 |
| .1000+0j | $-.1000+01$ | . 1000 COL | .1000401 | $-.1000+01$ | $-.1000+01$ | . $100 \mathrm{D}+01$ | . 3941 -6i |
| .108D+0i | .1000+01 | . 1000801 | . $10000+15$ | . $180 \mathrm{D}+8 \mathrm{Cl}$ | .1000+01 | .18009+19 | . $38981-81$ |

coluhin heanc:
$.100 D+00.000 D+60 \quad .000 D+00 \quad .100 D+00 \quad .0000+00 \quad .000 D+00 \quad .2215-01$
collmin standard deviations

correlation hatrix:

| 1.10 | 1.08 | 1.11 | 1.81 | 1.10 | 0.01 | . 27 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | 1.11 | 1.11 | 1.11 | 1.00 | 0.61 | . 42 |
| 0.11 | 1.00 | 1.16 | 1.08 | 1.08 | 0.10 | . 80 |
| 1.01 | 1.10 | 1.11 | 1.10 | 1.08 | 1.18 | . 15 |
| 1.00 | 1.60 | 1.10 | 1.11 | 1.11 | 1.81 | -. 25 |


| 0.00 | 0.18 | 0.60 | 0.18 | 1.10 | 1.10 | .18 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .27 | .42 | .80 | .85 | -.25 | .18 | 1.01 |

b-ESTIMATES UITH 95\% CONFIDENCE LIMITS
.02214
.00323
.00513
. 09971
. 10064
$-.0298$
. 80217

| $.00935-$ | .02497 |
| :--- | :--- |
| $.00044-$ | .00603 |
| $.00234-$ | .00793 |
| $.00692-$ | .01251 |
| $-.00215-$ | .00347 |
| $-.00578-$ | -.00095 |
| $-.00063-$ | .00496 |

COEFFICIENT DF MULTIPLE DETERHINATIOM= $99.1 \%$

| PREDICTED YALUES: | RESIDUALS: |
| :---: | :---: |
| .00389 | .00114 |
| .01504 | -.00114 |
| .08854 | -.08114 |
| .02226 | .00114 |
| .02494 | -.00114 |
| .02416 | .00114 |
| .03826 | .00114 |
| .04004 | -.00114 |

********** BASIC ANOUA TABLE ********
SOURCE:
$\mathcal{E}:$
DF:
HS
6.
.01019
18.5643ic
HODEL:
.0116
1.
.80001
HEAN (BA)
.01392
1.
TOTAL (CORR)
.00117
7.
. 10589
8.

## 

| ADDED LAST: | SS: | DF: | HS: | F: |
| :---: | :---: | :---: | :---: | :---: |
| (1) | . 09008 | 1. | . 80009 | 8.020:91 |
| B( 2) | .00021 | 1. | . 80021 | 20.23522 |
| B(3) | . 00075 | 1. | . 00075 | 72.37109 |
| B( 4) | . 80000 | 1. | . 00000 | .31571 |
| 1 ${ }^{\text {5 }}$ | . 00007 | 1. | . 00007 | 6.83539 |
| B( 61 | . 00004 | 1. | . 00004 | 3.66293 |

## APPENDIX $\mathrm{H}$.

## Example Calculation of the Initial Theoretical <br> Metal Cyanide Concentration

## H. 1 CALCULATION OF THEORETIGAL METAL CYANIDE CONCENTRATION AT THE BEGINNING OF EXPERIMENT (EXAMPLE CALCULATION FOR $\mathrm{Fe}-\mathrm{CN}$ at $4^{\circ} \mathrm{C}$, AIR, UV)

Measured total cyanide $[\mathrm{TCN}]_{0}=193 \mathrm{mg} / \mathrm{L}=0.00742 \mathrm{~mol} / \mathrm{L}$. Analytically determined metal concentration $\left[\mathrm{Fe}^{3+}\right]=12.04 \mathrm{mg} / \mathrm{L}$. The stoichiometric relationship for ferricyanide is

$$
\frac{\left[(\mathrm{CN})_{6}^{3-}\right]}{\left[\mathrm{Fe}^{3+}\right]}=2.795
$$

where molecular weight for cyanide is $\mathrm{MW}_{\mathrm{CN}^{-}}=26.02 \mathrm{~g} / \mathrm{mol}$ and molecular weight for iron is $\mathrm{MW}_{\mathrm{Fe}}{ }^{3+}=55.85 \mathrm{~g} / \mathrm{mol}$. Therefore, the initial cyanide concentration tied up with iron present will be:
$[\mathrm{MCN}]_{0}=2.795 \times 12.04=33.65 \mathrm{mg} / \mathrm{L}=0.00129 \mathrm{~mol} / \mathrm{L}$ and the initial free-cyanide value will be:

$$
[\mathrm{FCN}]_{0}=[\mathrm{TCN}]_{0}-[\mathrm{MCN}]_{0}=0.00742-0.00129=0.00613 \mathrm{~mol} / \mathrm{L}
$$

## APPENDIX H .2

## Computer Program Used for Four-Parameter Estimation Model ( $\mathrm{PCN}, \mathrm{MCN}, \mathrm{k}_{\mathrm{v}}, \mathrm{k}_{1}$ )

(Example: Synthenic Iron-Cyanide at $4^{\circ} \mathrm{C}, \mathrm{AIR}$, OV )

```
 PROGRAM TST(INPUT, OUTPUT, TAPE5=INPUT, TAPEG=OUTPUT,
 +DEBUG=OUTPUT, TAPEI1)
 DIMENSION Y(25),TH(4),DIFF(4),SIGNS(4),SCRAT (G8B8)
```


FOUR PARAMETER MODEL

```

```

        COMMON /B/ X(25),YP(6,G1),DELT,NTSTEP,TT(G1),NT1,YINIT
        EXTERNAL MODEL
        DATA NP,MIT/4,15/
        DATA NOB/15/
        DATA NPROB/1/
        DATA EPS1,EPS2,FLAM.FNU/1.E-6,1.E-6.8.01.10./
        READ(5,*) (TH(I),I=1,NP)
        WRITE(G,10Q) (TM(I),I=1,NP)
    189 FORMAT(4F12.9)
READ(5,*) (X(I),Y(I),I=1,NOB)
HRITE(6,%)(X(I),Y(I),I=1,NOB
YAU=B.
DO 30 I=1,NOB
YAU=YAU+Y(I)
YAU= YAU/FLOAT (NOB)
TSS=Q.
DO 35 I= 1.NOB
35 TSS=TSS+(Y(1)-YAU)*** 2
TSOS=TSS/(26000. \#\#2)
HRITE(6,200)TSOS
200 FORMAT(1X,"TOTAL SUM OF SQUARES IS"EI4.7)
DO 4B J=1.NOB
Yi=Y(J)/26000
Y(J)=Y1
CALL PLOTPT(X(J),Y1,5)
40 CONTINUE
YINIT:Y(1)
DELT=2.
NTSTEP=X(NOB)/DELT
DO \&S I I=1,NP
DIFF(I)=0.01
45 SIGNS(I)=1.0
CALL UWHAUS(NPROB,MODEL,NOB,Y,NP,TH,DIFF,SIGNS,EPS1,EPS2,MIT,
+FLAM,FNU,SCRAT,6)
CALL MODEL (NPROB,TH,F,NOB,NP)
DO 50 J=1,NT1

```
```

    T=TT(J)
    CALL PLOTPT (T,YP(1,j),4)
    CALL PLOTPT (T,YP(2,J),2)
    CALL PLOTPT (T,YP(3,J),20)
    50 CONTINUE
    CALL OUTPLT
    STOP
    STOP
    END
SUBROUTINE MODEL(NPROB,TH,F,NOB,NP)
DIMENSION TH(4),F(25)
COMMON /B/ X(25),YP(6,61),DELT,NTSTEP,TT(61),NT1,YINIT
INTEGER N,IND,NW,IER,K
REAL IX,IY
REAL YY(3),C(24),W(3,9),XX,TOL,XEND
COMMON /A/ RKC,UK,UUKN,XK,YK,IX,IY
EXTERNAL FCNI
NW=3
N=3
xx=0.0
ITMAX=1
IF(NTSTEP.GT. 60)ITMAX=(NTSTEP/60.)+1
YY(1)=TH(1)
YY(2)=TH(2)
F(1)=YINIT
C CONSTANT DELT mUST bE less than OR EQual to minimum
C TIME BETHEEN OBSERUATIONS
T=0.
JOBS=2
JOBS=2
UK=.03643
XK=TH(3)
YK=TH(4)
IX=5
IY=4
YY(3) =F(1)-(IX*YY(1)+IY*YY(2))
TT(1)=T
YP(1,1)=YY(3)
YP(1,1)=YY(3)
YP(3,1)=YP(1,1)+YP(2,1)
TOL=0.0001
IND=1
DO 55 K=1.NTSTEP

```
```

XEND=FLOAT (K)*DELT
CALL DUERK (N,FCN1, XX,YY, XEND,TOL,IND,C,NH,W,IER)
IF (IND.LT.G.OR.IER.GT.O) GOTO 480
T=T+DELT
JPRED=(X(JOBS)/DELT)
YYY=IX*YY(1)+IY*YY(2)+YY(3)
IF(JPRED.EQ.K)F(JOBS):YYY
IF (JPRED.EO.K) JOBS= JORS+1
IF(((K/ITMAX)鱼ITMAX).EQ.K)GO TO 300
GO TO 55
KK=(K/ITMAX
TT(KK+1) =T
YP(1,KK+1)=YY(3)
YP(2,KK+1)=IX\#YY(1)+IY\#YY(2)
YP(3,KK+1)=YY(3)+YP(2,KK+1)
CONTINUE
CONTINUE
NT1=KK+1
RETURN
END
SUBROUTINE FCNI(N,XX,YY,YPRIME)
COMMON /A/ RKC,UK,UUKN,XK,YK,IX,IY
REAL YY(N),YPRIME(N),XX,IX,IY
YPRIME(1)=-XK*(YY(1))
YPRIME(2)=(XK\#(YY(1)))-(YK\#(YY(Z)))
YPRIME(3)=(IXmXK*YY(1))-(IY*XK\#YY(1))+(IY*YK\#(YY(2)))-
(UK*.99*YY(3))
RETURN
END
SUBROUTINE UWHAUS(NPROB,MODEL,NOB,Y,NP,TH,DIFF,SIGNS,EPSI,EPSZ,
1 MIT. FLAM, FNU, SCRAT,LL)
DIMENSION SCRAT(I)
IA=1
IB=IA+NP
IC=IB+NP
ID=IC+NP
IF=IE+NP
IG=IF+NOB
IH=IG+NOB
II = IH + NP NOB
IJ = IH
CALL HAUSS(NPROB, MODEL,NOB,Y,NP,TH,DIFF,SIGNS,EPSI,EPSR,MIT
1 -FLAM,FNU,SCRAT(IA), SCRAT(IB), SCRAT(IC), SCRAT(ID),

```
```

    2 SCRAT(IE), SCRAT(IF), SCRAT(IG), SCRAT(IH), SCRAT(II),
    3 SCRAT(IJ),LL)
        RETURN
        END
        SUBROUTINE HAUS9(NPRBO, MODEL, NBO, Y,NQ,TH,DIFZ,SIGNS,EPIS,EP2S.
    IMIT,FLAM,FNU, Q,P,E,PHI,TB,F,R,A,D,DELZ,LL)
    STORES(GA, Q, TEMP,A,P,SDEV,FNU,D,R,EPS, DELZ)
    DIHENSION TH(NQ), DIFZ(NQ), SIGNS(NQ), Y(NBO)
    DIMENSION O(NQ), P(NQ), E(NQ). PHI(NO), TB(NQ)
    DIMENSION F(NBO). R(NBO)
    DIMENSION A(NQ,NQ), D(NO,NQ), DELZ(NBO,NO)
    DIMENSION TH(1), DIFZ(1), SIGNS(1), Y(1), Q(1), P(1), E(1),
    1 PHI(1), TB(1),F(1), R(1), A(1), D(1), DELZ(1)
    ACOS(X) = ATAN(SORT(1.0/X事輷 - 1.0))
    NP = NQ
    NPROB = NPRBO
    NOB = NBO
    EPS1 = EPIS
    EPS2 = EP2S
    EPS2 = EP2
    NPSO = NP NP
    NSCRAC = 5*NP+NPSO +2#NOB+NP*NOE
    HRITE(LL, 1008) NPROB, NOB, NP, NSCRAC
    WRITE(LL,1801)
    CALL GASSE(1, NP, TH, TEMP, TMEP,LL)
    CALL GASSO(1
    CALL GASSE(1, NP, DIFZ, TEMP, TEMP,LL)
    IF(MINE(NP-1,5B-NP,NOB-NP,MIT-1,999-MIT)\99,15,15
    1F(FNU-1.E)99. 99. 16
    CONTINUE
DO 19 I=1,NP
TEMP = ABS(DIFZ(I))
IF(AMINI(1.日-TEMP, ABS(TH(I))))99, 99, 19
CONTINUE
GA = FLAM
NIT = 1
LAOS = 0
IF(EPS1) 5,70,70
EPSI = 0
70 5s0 = 0
CALL MODEL(NPROB, TH, F, NOB, NP)
DO 90 I = 1. NOB

```
\(R(I)=Y(I) \sim F(I)\)
90 SSQ=S50+R(I)*R(I)
WRITE(LL. 1003)SSa
```

C
C
C
100 GA = GA / FNU
INTCNT =0
HRITERLL,10Q4)NIT
101 JS = 1 - NOB
DO 130 J=1,MP
TEMP = TH(J)
P(J)=DIFZ(J)\&TH(J)
TH(J)= TH(J)\&P(J)
O(J)=0
IS = JS + NOB
WRITE(6,10)J

```

```

C****
CALL MODEL(NPROB, TH, DELZ(JS), NOB. NP)
IJ = JS-1
DO 120 I = 1. MOB
IJ=IJ+1
DELZ(IJ) = DELZ(IJ)-F(I)
120 O(J)=Q(J) + DELZ(IJ) \& R(I)
O(J)=Q(J)/P(J)
130 TH(J) = TEMP
IF(LAOS) 131.131.414
131 DO 150 I = 1, NP
DO 151 J=1.I
SUM = 0
KJ = NO\&*(J-1)
KI = NOB*(I-1)
DO 160 K = 1, NOB
KI = KI + I
KJ=KJ +i
160 SUM = SUM + DELZ(KI) \# DELZ(KJ)
TEMP = SUM/(P(I)\#P(J))
JI = J + NP*(I-1)
D(JI) = TEMP
IJ = I + NP*(J-I)
151 D(IJ) = TEMP

```
```

158 E(I) = SORT(D(JI))
CONTINUE
DO 153 I = 1, NP
IJ =I-NP
.0.TBC10 153 J=1.I

- 221
221 CONTINUE
SUMB=0
CALL MODEL(NPROB, TB, F, NOB, NP)
DO 230 I=1,NOB
R(I)=Y(I)-F(I)
230 SUMB=SUMB+R(I)*R(I)
HRITE(LL,1043)SUMB
IF(SUMB - (1.0+EPS1) %SSO) 662, 662, 663
663 IF(AMINI(TEMP-30.0. GA)) 665, 665,664
665 STEP=STEP/Z.E
INTCNT = INTCNT \& 1
IF(INTCNT - 36) 170, 2700. 2708
664 GA=GA*FNU
INTCNT = INTCNT * 1
IF(INTCNT - 36) 666, 2700, 2700
662 WRITE(LL,1007)
DO 669 I=1,NP
669 TH(I)=TB(I)
CALL GASSO(1, NP, TH, TEMP, TEMP,LL)
WRITE(LL,104B) GA, SUMB
1F(EPS2) 229,229.225
229 IF(EPS1) 278,270,265
225 DO 24B I = 1, NP
IF(ABS(P(I))/(1.E-20+ABS(TH(I)))-EPS2) 240, 240. 241
241 IF(EPS1) 270,270,265
24\& CONTINUE
HRITE(LL,1083)EPS2
GO TO 200
265 IF(ABS(SUMB - SSO) - EPSI*SSO) 266, 266, 270
266 HRITE(LL,1810) EPSI
GO TO 280
27% 550=SUMB
NIT=NIT+1
IF(NIT - MIT) 100, 100, 200
2700 WRITE(LL,2710)
2710 FORMAT(//115HO**** THE SUM OF SQUARES CANNOT BE REDUCED TO THE SUM
IOF SOUARES AT THE END OF THE LAST ITERATION - ITERATING STOPS ()

```
```

C
280 HRITE(LL,1811)
WRITE(LL,20@1) (F(I), I = 1, NOB)
WRITE(LL,2001)
WRITE(LL,1012)
WRITE(LL.2001) (R(1), I = 1. NOB)
WRITE(LL,1017)
1017 FORMAT(////"* X PRIME-K MATRIX")
CALL GASSE(4,NP,TEMP,TEMP,D,LL)
SSO=SUMB
IDF=NOB-NP
WRITE(LL.1015)
MRITECLL. 1015
I=0
CALL MATIN(D, NP, P, I, DET)
DO }7692I=1,N
II=I+NP*(I-1)
7692E(I) = SQRT{D(II))
DO 348 I=I,NP
JI=I+NP的(I-1)-1
IJ = I +NP\#(I-2)
DO 340 J = I. NP
JI=JI + I
A(JI) = D(JI) / (E(I)*E(J)
IJ=IJ + NP
A(IJ) = A(JI)
CALL GASSO(3,
HRITE(LL,1816)
IF(IDF) 341. 410, 341
341 DEU = SSO / IDF
WI4) SDEV, IDF
DEU)
DO 391 I=1,NP
P(I)=TH(I)+2.0mE(I)\#SD391 TB(I)=TH(I)-2.0 WRITE(LL,1039)
CALL GASSE(2, NP, TB, P, TEMP,LL)
LAOS = 1
GO TO 101
414 DO 415 K = 1. NO:
TEMP = D
DO 420 I=1,NF
DO 420 I=1,NF
DO 420 J=\&,NP
ISUB = K+NOB* (J-1)

```
```

    DEBUG2 = DELZ(ISUB)
    c
DEBUGZ = DELZ(K + NOB*(J-1))
IJ=I + NP*(J-1)
DEBUG3 = D(IJ)/(DIFZ(I)*THDIFZ(J)*TH(J))
DEGUG1 * DEBUG2 * TEMP = 2.0*SORT(TEMP(K)=F(K)+TEMP
415 F(K)=F(K)-TEMP
WRITE(LL,10E日)
TE=0
DO 425 I=1,NOB,5
IE=IE+5
IF(NOB-1E) 430,435,435
4 3 0 ~ I E = N O B
435 WRITE(LL,2001) (R(J), J = I, IE)
425 WRITE(LL,2日EG) (F(J), J = I, IE)
410 WRITE(LL,1033) NPROB
RETURN
99 WRITE(LL,1034)
GO T0 410
1000 FORMAT(30H1NON-LINEAR ESTIMATION, PROBLEM NUMBER 13.// 15.
1 14H OBSERUATIONS, 15, 11H PARAMETERS IT, 17H SCRATCH REQUIRED)
1001 FORMAT//ZSHOINITIAL PARAMETER UALUES )
1002 FORMAT(/54HDPROPORTIONS USED IN CALCULATING DIFFERENCE QUOTIENTS )
10日3 FORMATS/25HEINITIAL SUM OF SOUARES = E12.4)
10日4 FORMAT (/////45X,13HITERATION NO. I4)
10日7 FORMAT(/32HQPARAMETER UALUES UIA REGRESSION,
100日 FORMAT(////SAHBAPPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION UAL
IUE
1009 FORMATI/G2HOITERATION STOPS - RELATIUE CHANGE IN EACH PARAMETER LE
15S THAN E12.4)
201ם FORMAT(/G2HRITTERATION STOPS - RELATIUE CHANGE IN SUM OF SQUARES LE
1SS THAN E12.4)
1011 FORMAT(22HIFINAL FUNCTION UALUES )
1012 FORMAT(////10HERESIDUALS )
1014 FORMATI//2AHQUARIANCE OF RESIDUALS = ,E12.A,1H,I4.
120H DEGREES OF FREEDOM,
1015 FORMAT(////19HOCORRELATION MATRIX ,
1015 FORMAT/////19HECORRELATION NATRIX, ,
1033 FORMAT(//19HEEND OF PROBLEM NO. I3)
1034 FORMAT(/16HBPARAMETER ERROR )
1039 FORMAT(/7IHEINDIUIDUAL CONFIDENCE LIMITS FOR EACH PARAMETER CON LI
1NEAR HYPOTHESIS)
1040 FORMAT(/GHELAMBDA =EIO.3, AX,33HSUM OF SQUARES AFTER REGRESSION =
1E15.7)

```
```

1041 FORMATC14H DETERMIMANT = EIR.4, 6X, 25H ANGLE IN SCALED COORD. =
1 F5.2. BHDEGREES
1043 FORMAT(2BHOTEST POINT SUM OF SQUARES = E12.4)
20日\& FORMAT(/5E12.4)
2006 FORMAT(5E12.4)
END
SUBROUTINE MATIN(A, NUAR, B, NB, DET)
DIMENSION A(NUAR, 1), B(NUAR, 1)
PIUOTM = A(1.1)
DET = 1.0
DO 55: ICOL = 1. NUAR
PIUOT = A(ICOL ICOL
PIUOTM = AMINI(PIVOT, PIUOTM)
DET = PIUOT \# DET
C
DIUIDE PIUOT RON BY PIUOT ELEMENT
A\&ICOL. ICOL)=1.0
PIUOT = AMAXI(PIUOT, 1.E-20)
PIUOT = A(ICOL, ICOL)/PPIUOT
DO 350 L=1, NUAR
A(ICOL,L)=A(ICOL,L)\#PIUOT
IF(NB.EQ. E) GO 10 371
DO 370 L=1,N
370
C
37
DO 550 L1=1,NUAR
IF(LI .EO. ICOL) 60 TO 550
T = A(L1, ICOL)
A(L1, ICOL) = 0
DO 450 L=1,NUAR
A(L1, L) = A(LI, L) - A(ICOL, L)*T
IF(NB,EO. B) GO TO 55*
DO 508 L=1,NB
500 B(LI, L) = B(LI, L)-B(ICOL.L)mT
550 CONTINUE
RETURN
END
SUBROUTINE GASSE(ITYPE, NQ, A, B, C.LL)
DIMENSION A(NO), B(NQ),C(NO,NO)

```


SUBROUTINE GASSO(ITYPE NO, ANA, B, C, LL DIME NSINN
NP
NP
\(=N Q / 10\)
 LUU \(=1\)
10 IFGNR ín \(5,20,30\)
15 RETURN

10

30 WRILCN GI LUPI RETURN

\(1560 \quad\) GRIHE(LG.600) (B(J), J=LOW,LUP)

1.193.19. 160 . 24. 155. 41. 143. 4. 133. 65. 120. 72. 116. 113. 76.6 144. 63.3 151. 62.6 168. 55. 175. 54. 192. 48.6
 TOTAL SUM OF SOUARES IS . \(6955889 E-04\)
```

NON-LINEAR ESTIMATION, PROBLEM NUHBER 1
19 OBSERVATIONS, 4 PARAMETERS 150 SCRATCH REQUIPED

```
initial parameter values
\[
.6129 \mathrm{E}-02 \quad .1294 \mathrm{E}-02^{2} \quad .2152 \mathrm{E}-01^{3} \quad .6480 \mathrm{E}-02^{4}
\]

PROPORTIONS USED IN CALCULATING DIFFERENCE OUOTIENTS
\[
.1000 \mathrm{E}-01 \quad .1000 \mathrm{E}-01^{2} \quad .1000 \mathrm{E}-01^{3} \quad .10 \mathrm{COE-01}
\]

INITIAL SUM OF SQUARES \(=.3497 E-04\)

ITERATION NO. 1
DETERMINANT \(=.1678 E-02 \quad\) ANGLE IN SCALED COORD. \(=40.290 E G R E E S\)
```

TEST POINT PARAMETER VALUES
.4852E-02 .2409E-02 .1189E-01 -.18 ElE-02
DETERMINANT = .7674E-D2 ANGLE IN SCALED COORD. =33.68DEGREES
TEST PCINT PARAMETER VALUES
.5291E-02 .1983E-02 .1015E-01 -.3453E-02
DETERMINANT = .1023E+DD ANGLE IN SCALED CCOPD. =28.920EEREES
TESt POINT PARAMEYER VALUES
.5631E-02 .1864E-02 .1125F-01 -. 3783E-02
VEST POINT PARANETER VALUES
.5880E-02 .1579E-02 .1638E-01 .1349E-02
TEST POINT SUM OF SQUARES = .5498E-05

```
parameter values via regression
 \(.5880 \mathrm{E}-02 \quad .1579 \mathrm{E}-02^{2} \quad .1638 \mathrm{E}-01^{3} \quad .1349 \mathrm{E}-02^{4}\)
LAMBOA \(=.100 \mathrm{E}+00\) SUM OF SQUARES AFTER REGRESSION \(=.5498036 \mathrm{E}-0\) E
 \(.5597 E-02.1701 \mathrm{E}-02\). \(9553 \mathrm{E}-02.2303 \mathrm{E}-02\)
TEST PCINT SUM OF SQUARES \(=.1870 E-05\)
```

PARAMETER VALUES VIA REGRESSION

```

```

LAMBDA = -100E-01 SUM OF SQUARES AFTER REGRESSION = .1870273E-05
ITERATION NO. 3
OETERMINANT = .2833E-03 ANGLEIN SCALED COORD. =73.14DEGREES
TEST POINT PARAMETER VALUES
.6271E-02 . 1092E-02 .9496E-02 . 2256E-02
TEST POINT SUM OF SQUARES = . 2479E-06
PARAMETER VALUES VIA REGRESSION

| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| .6271E-02 | . $1092 \mathrm{E}-02$ | .9496E-02 | . 2256 E-02 |

LAMBDA = -100E-02 SUM OF SQUARES AFTER REGRESSION = . 2478693E-06
ITERATION NO. 4
DETERMINANT = .7924E-04 ANGLE IN SCALET COORD. =63.11DEGREES
TEST POINT PARAMETER YALUES
.7951E-02 -.6375E-03 . 6345E-02 -.3190E-02
DETERPINANT = .3009E-03 ANGLEIN SCALED COORD. =62.97TEGREES
TEST POINT PARAMETER VALUES
.6719E-02 .6322E-03 .8665E-02 . 7854E-03
TEST POINT SUM OF SQUARES = . 2465E-06
PARAMETER VALUES VIA REGRESSION

```

```

LAMBDA = 10DE-02 SUM DF SQUARES AFTER REGRESSION = . 2464799E-0E
ITERATION NO. 5
DETERMINANT = .1281E-03 ANGLE IN SCALED COORD. =87.92DECREES
TEST POINT PARA NETER YALUES
.7706E-02 -.3940E-03 .7023E-02 -.5754E-02
DETERMINANT = .3511E-03 ANGLE IN SCALED COORD. =86.09DEEREES

```
```

TEST POINT PARAMETER VALUES
.7053E-02 .2862E-03 .8154E-02 -.1358E-02
DETERMINANT = .2927E-02 ANGLE IN SGALEO COORD. =71.110EGREES
tEST POINT PARAMETER VALUES

```

```

TEST POINT PARAMETER VALUES
.6716E-02 .6306E-03 .8682E-02 . 2925E-03
TEST POINT SUM OF SQUARES = . 2360E-06
PARAMETER VALUES VIA REGRESSION
$.6716 E-02 \quad .6306 E-03^{2} \quad .8682 E-02^{3} \quad .2925 E-03^{4}$
LAMBDA = .1DOE+DO SUM OF SQUARES AFTER REGRESSION = . 2360175E-06

```

```

                                    ITERATION NO. 7
    DETERMINANT = .4533E-03 ANGLE IN SCALED CCORD. =67.59DEGREES
TEST POINT PARAMETER VALUES
.7077E-02 .2572E-03 . 8075E-02 -. 2275E-02
TEST POINT SUN OF SQUARES = . 2628E-06
DETERMINANT = .3293E-C2 ANGLE IN SGALED CCORD. =6G.72OEGREES
TEST PCINT PARAMETER VALUES
.6816E-02 . 5333E-03 . 8560E-02 -.4845E-03
TEST POINT SUM OF SQUARES = . 2327E-06
PARAMETER VALUES VIA REGRESSION

```

```

LAMBDA = .100E-01 SUM OF SQUARES AFTER REGRESSION = . 232713BE-0E

```
\(.6860 E-82 \quad .4871 E-03^{2} \quad .8482 E-02^{3}-.8414 E-03^{4}\)
```

DETERFINANT = .4893E-03 ANGLE IN SCALED COCRD. =63.54DEGREES

```
DETERFINANT = .4893E-03 ANGLE IN SCALED COCRD. =63.54DEGREES
TEST POINT PARAMETER VALUES
TEST POINT PARAMETER VALUES
 .7095E-02 .2362E-03 .8038E-02 -.2630E-02
 .7095E-02 .2362E-03 .8038E-02 -.2630E-02
TEST POINT SUM OF SQUARES = . 2613E-DG
TEST POINT SUM OF SQUARES = . 2613E-DG
DETERMINANT = . 3402E-02 ANGLEIN SCALED COORD. =62.850ECREES
DETERMINANT = . 3402E-02 ANGLEIN SCALED COORD. =62.850ECREES
TEST POINT כARAMETER VALUES
TEST POINT כARAMETER VALUES
 .6860E-02 .4871E-03 . 8482E-02 -.8414E-03
 .6860E-02 .4871E-03 . 8482E-02 -.8414E-03
TEST POINT SUM OF SQUARES = . 2313E-06
TEST POINT SUM OF SQUARES = . 2313E-06
PARAMETER VALUES VIA REGRESSION
PARAMETER VALUES VIA REGRESSION
LAMBDA = . 100E-01 SUM OF SQUARES AFTER REGOESSION = . 2313454E-0E
```

LAMBDA = . 100E-01 SUM OF SQUARES AFTER REGOESSION = . 2313454E-0E

```
ITERATION NO. 9

LAMBOA \(=.100 E-01\) SUM OF SQUARES AFTER REGRESSION = \(\quad 2300 E 57 E-0 E\)
```

ITERATION NO. 10
DETERMINANT = .576EE-03 ANGLEIN SCALED COORD. =67.09DECREES
TEST POINT PARAMETER VALUES
.7220E-02 -2075E-03 .7983E-02 -. 3289E-02
TEST POINT SUM OF SQUARES = . 252BE-06
DETERKINANT = .3648E-02 ANGLEIN SCALED COORO. =66.39OEGREES
TEST POINT PARAMETER VALUES
.6938E-02 .4035E-03 . 8337E-02 -. 1587E-02
TEST PCINT SUM OF SQUARES = . 2289E-06

```
parameter values via regression
\begin{tabular}{rrrr}
2 & 2 & \(3^{2}\) \\
\(.6938 E-02\) & \(-4035 E-03\)
\end{tabular}
```

LAMBDA =.100E-01 SUM OF SQUARES AFTER REGRESSION = . 2289C04E-DE

```

```

ITERATION NO. 12
DETERMINANT = .6902E-03 ANGLE IN SCALED COORD. =69.55DEGREES
TEST POINT PARANETER VALUES
.7131E-02 .1935E-03 .7950E-02 -.3827E-02
TEST POINT SUM DF SQUARES = . 2400E-06
DETERMINANT = .3944E-02 ANGLEIN SCALEO COORO. =68.83DEGREES

```
```

TEST POINT PARAMETER VALUES
.7002E-02 .3344E-03 .8213E-02 -. 23 35E-02
TEST POINT SUM OF SQUARES = - 227DE-06
PARAMETER VALUES VIA REGRESSION

```

```

LAMBDA = .100E-01 SUM OF SQUARES AFTER REGRESSION= . 2270004E-06
ITERATION NO. 13
DETERFINANT = .7550E-03 ANGLE IN SCALED CCORD. =70.08DEGREES
TEST POINT PARAMETEF VALUES
.7133E-02 .1904E-03 .7940E-02 -.4038E-02
TEST POINT SUM OF SOUARES = . 2344E-06
DETERMINANT = .4104E-02 ANGLE IN SCALED COORD. =69.36DEGREES
TEST POINT PARANETER YALUES
.7028E-02 .3061E-03 -8160E-02 -.2689E-02
TEST POINT SUM OF SQUARES = . 2263E-06
PARAMETER VALUES VIA REGRESSION
.702BE-02 . - 3061E-03 -6160E-02 -. 2689E-02
LAMBDA = .100E-01 SUM OF SQUARES AFTER REGRESSION = . 2262ES3E-0E

```
```

                                    IVERATION NO. 14
    DETERMINANT = .8229E-03 ANGLE IN SCALED COORD. =70.O9DEGREES
TEST POINT PARAMETER VALUES
.7134E-02 -1887E-03 .7933E-02 -.4248E-02
TEST POINT SUM OF SQUARES = . 2302E-06
DETERMINRNT = .4267E-02 ANGLE IN SCALED COORD. =69.39DEGREES
TEST PCINT PARAMETER VALUES
.7050E-02 -2819E-03 .8114E-02 -.3018E-02
TEST POINT SUM OF SQUARES = . 2257E-06

```

PARAMETER VALUES VIA REGRESSI ON

```

LAHBDA = -10DE-D1 SUM OF SQUARES AFTER REGRESSION= . 2257352E-0E

```
```

ITERATION NO. 15
DETERFINANT = .6915E-03 ANGLEIN SCALET COORD. =69.52DEEREES
TEST PCINT PARAMETEP VALUES
.7134E-02 .1879E-03 .7928E-02 =.4341E-02
TEST POINT SUM OF SQUARES = . 2275E-06
DETERYINANT = .4427E-02 ANGLEIN SCALED COOPD. =68.86DEGREES
TEST POINT PARAMETER VALUES
.7068E-02 .2617E-03 .8074E-02 -. 3315E-02
TEST POINT SUM OF SQUARES = . 2253E-06
PARAMETER VALUES VIA REGRESSIDN

```

```

LAMBDA = .100E-01 SUM OF SQUARES AFTER REGRESSION = . 2253223E-0G

```

\section*{FINAL FUNCTION VAL UES}
\begin{tabular}{lllll}
\(.7330 E-02\) & \(.6375 E-02\) & \(.6087 E-02\) & \(.5384 E-02\) & \(.5067 E-02\) \\
\(.4491 E-02\) & \(.4230 E-02\) & \(.3161 E-02\) & \(.2533 E-02\) & \(.2433 E-02\) \\
\(.2164 E-02\) & \(.2083 E-02\) & \(.1867 E-02\) & \(.1802 E-02\) & \(.1629 E-02\) \\
\(.1577 E-02\) & \(.1440 E-02\) & \(.1400 E-02\) & \(.1097 E-02\) &
\end{tabular}

\section*{RESIDUALS}
\begin{tabular}{|c|c|c|c|c|}
\hline .9314E-04 & -.2211E-03 & -. 1252E-03 & . \(1156 \mathrm{E}-03\) & . \(4888 \mathrm{E}-04\) \\
\hline .1247E-03 & . \(2312 \mathrm{E}-03\) & -.2150E-03 & -. 98 C9E-04 & -. \(2533 \mathrm{E}-04\) \\
\hline -.4860E-04 & -. \(6543 \mathrm{~S}-05\) & . 25 99E-05 & -. 13 52E-04 & . \(5985 E-04\) \\
\hline . 420 EE-04 & . \(3689 \mathrm{E}=04\) & \(.2729 E-04\) & -. \(28 \mathrm{CLE-04}\) & \\
\hline
\end{tabular}

\section*{X PRIME-X MATRIX}

1
14.7290
\(28.8171 \quad 31.3005\)
\(3 \quad-1.5559 \quad-5.5953\)
\(4 \quad-.1107\)
-. 8885
2
\[
-.0007
\]

4
\[
5
\]

3
1.1320
.1422
```

VARIANCE OF RESIDUALS = .1502E-07. 15 DEGREES OF FREEDOM
INDIVICUAL CONFIOENCE LIMITS FOR EACH PARANETER (ON LINEAF HYPOTHESIS)

| 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: |
| $.7914 E-02$ | $-1195 E-02$ | $.9977 E-02$ | $.9769 E-02$ |
| $.6223 E-02$ | $-.6716 E-03$ | $.6171 E-02$ | $-.1640 E-01$ |

```

APPROXIMATE CONFIDENCE LIMITS FOR EACH FUNCTION VALUE
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& .7525 \mathrm{E}-02 \\
& .7135 \mathrm{E}-02
\end{aligned}
\] & \[
\begin{aligned}
& .6489 E-02 \\
& .6261 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .6189 E-02 \\
& .5985 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .5481 E-02 \\
& .52 \mathrm{EBE}-02
\end{aligned}
\] & \[
\begin{aligned}
& .5166 E-02 \\
& .4967 E=02
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& .4595 E-02 \\
& -438 E E-02
\end{aligned}
\] & \[
\begin{aligned}
& .4336 E-02 \\
& .4125 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .3253 E-02 \\
& 3069 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .2623 E-82 \\
& .2442 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .2526 E-02 \\
& -234 B E-02
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& -2268 E-02 \\
& -2060 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .2192 \mathrm{E}-02 \\
& .1975 \mathrm{E}-02
\end{aligned}
\] & \[
\begin{aligned}
& .1988 \mathrm{E}-02 \\
& .1745 \mathrm{E}-02
\end{aligned}
\] & \[
\begin{aligned}
& -1928 F-02 \\
& -1676 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .1755 E-02 \\
& .1493 E-02
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& -1716 E-02 \\
& -1439 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .1584 E-02 \\
& .1296 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .1544 E-02 \\
& .1255 E-02
\end{aligned}
\] & \[
\begin{aligned}
& .1285 E-02 \\
& .9093 E-03
\end{aligned}
\] & \\
\hline
\end{tabular}

END OF PROBLEM NO. 1

\section*{APPENDIX H. 3}

\title{
Results of Three-Parameter Estimation Model (Tables 1 to 4) and the Plots of Rstimated MCN Values with their \(95 \%\) Confidence Intervals (UWHAUS Estimation Based on the Linear Hypothesis)
}
- Parameters estimated: MCN, \(\mathbf{k}_{\mathbf{v}}, \mathbf{k}_{\mathbf{1}}\).
- [TCN] Equal Initial Measured Value that Changes in Time.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(k_{\nabla}=k^{\text {HaCN }}\) & & & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \mathrm{AlR}^{\mathrm{NO} \mathrm{UV}}
\end{aligned}
\] & \begin{tabular}{l}
\(20^{\circ} \mathrm{C}\) \\
No AIR \\
NO UV
\end{tabular} & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { AIR }_{\text {No }} \mathrm{tV}
\end{aligned}
\] & \begin{tabular}{l}
\(4^{\circ} \mathrm{C}\) \\
No AIR \\
No UV
\end{tabular} & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \mathrm{AlR}^{21 R}
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { NO AIR } \\
& \text { UV }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { INR }^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{4^{\circ} \mathrm{C}} \\
& \text { No AIR }
\end{aligned}
\] \\
\hline \multirow{11}{*}{Comm} & \(\stackrel{\text { c }}{ }\) & & \[
\begin{aligned}
& 1.65 \\
& (.0394)
\end{aligned}
\] & \[
\begin{aligned}
& 1.00 \\
& (.0238)
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& (.0074)
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& (.0050)
\end{aligned}
\] & \[
\begin{gathered}
1.63 \\
(.0389)
\end{gathered}
\] & \[
\begin{aligned}
& 1.06 \\
& (.0253)
\end{aligned}
\] & \[
\begin{aligned}
& 0.98 \\
& (.0234)
\end{aligned}
\] & \[
\begin{aligned}
& 0.58 \\
& (.0138)
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \mathbf{V} \\
& \mathbf{E}
\end{aligned}
\] & \[
\begin{aligned}
& {[\mathrm{MCN}] g_{L}} \\
& (\mathrm{~mole} / \mathrm{L})
\end{aligned}
\] & & \multicolumn{7}{|c|}{\(0.13 \times 10^{-2}\)} \\
\hline & N & \({ }^{\mathrm{Cua}}\) (\(\mathrm{h}^{-1}\)) & . 0207 & . 0071 & . 0037 & . 0033 & . 0153 & . 0024 & . 0036 & . 0031 \\
\hline & & unhaus & . 0635 & . 0154 & . 0187 & . 0829 & . 1049 & . 0153 & . 0148 & . 2259 \\
\hline & & \[
\begin{aligned}
& \text { MCN } \times 10^{2} \\
& \text { UHAUS }
\end{aligned}
\] & . 092 & 5.67 & . 237 & . 523 & . 146 & . 052 & . 066 & . 451 \\
\hline & & \[
k_{\text {Cu }}{ }_{\text {UNHAUS }}^{\left(h^{-1}\right)}
\] & .88×10 \(0^{-2}\) & . 94 & \(.26 \times 10^{-2}\) & \(.32 \times 10^{-2}\) & . \(72 \times 10^{-2}\) & . \(61 \times 10^{-6}\) & \(.29 \times 10^{-7}\) & -7.53×10 \({ }^{-2}\) \\
\hline & & \[
\begin{gathered}
\operatorname{TCN} \times 10^{2} \\
(\text { mole/L })
\end{gathered}
\] & . 761 & . 796 & . 781 & . 759 & . 717 & . 758 & . 750 & . 785 \\
\hline & & MCN/TCN & . 12 & NA & . 30 & . 69 & . 19 & . 07 & . 09 & . 57 \\
\hline & & TSS \(\times 10^{6}\) & 55.9 & 59.3 & 58.1 & 38.0 & 58.9 & 81.5 & 74.1 & 50.2 \\
\hline & & RSS \(\times 10^{6}\) & 1.0 & 1.2 & 1.1 & . 43 & . 65 & 1.6 & 1.8 & . 72 \\
\hline & & \(\mathrm{R}^{2}(\mathrm{X})\) & 98 & 98 & 98 & 99 & 99 & 98 & 97 & 98 \\
\hline
\end{tabular}

NA - not acceptable

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(k_{v}=k_{\text {MaCN }}\) & & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { AIR } \\
& \text { NO } \mathrm{UV}
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { No AIR } \\
& \text { NO } \mathrm{UV}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { AN }{ }^{\text {IR }} \mathrm{UV}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{4 \circ} \mathrm{C} \\
& \text { No AIR } \\
& \text { NO UV }
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { AIR }
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \mathrm{No} \text { AIR }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \mathrm{AIV}_{\mathrm{UV}}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{4} \mathrm{C} \\
& \text { UV AIR }
\end{aligned}
\] \\
\hline \multirow{10}{*}{\(\mathrm{za}-\mathrm{CN}\)} & \(k_{*}\left(\begin{array}{l}(\mathrm{cm} / \mathrm{h}) \\ \left(h^{-1}\right)\end{array}\right.\) & \[
\begin{aligned}
& 1.65 \\
& (.0394)
\end{aligned}
\] & \[
\begin{gathered}
1.00 \\
(.0238)
\end{gathered}
\] & \[
\begin{aligned}
& 0.31 \\
& (.0074)
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& (.0050)
\end{aligned}
\] & \[
\begin{aligned}
& 1.63 \\
& (.0389)
\end{aligned}
\] & \[
\begin{aligned}
& 1.06 \\
& (.0253)
\end{aligned}
\] & \[
\begin{aligned}
& 0.98 \\
& (.0234)
\end{aligned}
\] & \[
\begin{aligned}
& 0.58 \\
& (.0138)
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& {[\mathrm{ncm}] \stackrel{ }{(\mathrm{mol} / \mathrm{L})}} \\
& \mathrm{k}_{\mathrm{Zn}}\left(\mathrm{~h}^{-1}\right)
\end{aligned}
\] & . 0062 & . 0194 & . 0068 & \[
\begin{aligned}
& 0.13 \\
& .0045
\end{aligned}
\] & \[
\begin{aligned}
& \times 10^{-2} \\
& .0448
\end{aligned}
\] & . 0181 & . 0137 & . 0095 \\
\hline & uwhaus & . 8323 & . 0195 & . 0194 & . 0172 & . 0770 & . 0257 & . 0314 & . 0613 \\
\hline & MCN unhaus & . \(53 \times 10^{-2}\) & \(.11 \times 10^{-2}\) & \(.15 \times 10^{-2}\) & \(.40 \times 10^{-2}\) & . \(95 \times 10^{-3}\) & . \(87 \times 10^{-1}\) & . \(10 \times 10^{-1}\) & -1.38× \(10^{-2}\) \\
\hline & \(k^{2}\) n uwhaus & . 0559 & . 0612 & . 0039 & . 0043 & . 0181 & 1.10 & . 0698 & . 0096 \\
\hline & \[
\begin{gathered}
\text { TCN } \times 10^{2} \\
(\text { mole } / \mathrm{L})
\end{gathered}
\] & . 714 & . 648 & . 750 & . 631 & . 754 & . 769 & . 738 & . 731 \\
\hline & MCM/TCM & . 74 & . 17 & . 20 & . 63 & . 12 & NA & na & . 52 \\
\hline & Tss \(\times 10^{6}\) & 67.3 & 97.8 & 62.9 & 43.7 & 50.2 & 100.9 & 106.5 & 69.5 \\
\hline & RSS \(\times 10^{6}\) & . 03 & . 72 & . 72 & . 42 & . 16 & . 80 & 1.3 & 1.2 \\
\hline & \(\mathrm{R}^{\mathbf{2}}\) (X) & 99 & 99 & 98 & 99 & 99 & 99 & 98 & 98 \\
\hline
\end{tabular}

MA - not acceptable

TABLE n. 3.3. THESE RARMISTER ESTDAATION MODEL (NCN, \(k_{0}, k_{1}\)) - MICREL GYANIDE COMPLEX
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(k_{v}=k_{\text {MaCN }}\) & & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { AIR } \\
& \text { NO } \mathrm{UV}
\end{aligned}
\] & \(20^{\circ} \mathrm{C}\) NO ATR NO UV & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { AIR } \\
& \text { NO } \mathrm{UV}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { NO AIR } \\
& \text { NO UV }
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \mathrm{AIR}^{\mathrm{UV}}
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { NO AIR } \\
& \text { UV }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \mathrm{C} \\
& \mathrm{AIR}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { NO } \mathrm{AIR}
\end{aligned}
\] \\
\hline \multirow{10}{*}{W-6m} & \[
k_{v}\left(\mathrm{~cm}_{\left(h^{-1}\right)} h^{2}\right)
\] & \[
\begin{aligned}
& 1.65 \\
& (.0394)
\end{aligned}
\] & \[
\begin{aligned}
& 1.00 \\
& (.0238)
\end{aligned}
\] & \[
\begin{aligned}
& 0.31 \\
& (.0074)
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& (.0050)
\end{aligned}
\] & \[
\begin{gathered}
1.63 \\
(.0389)
\end{gathered}
\] & \[
\begin{gathered}
1.06 \\
(.0253)
\end{gathered}
\] & \[
\begin{array}{ll}
0.98 \\
(.0234)
\end{array}
\] & \[
\begin{aligned}
& 0.58 \\
& (.0138)
\end{aligned}
\] \\
\hline & & . 0027 & . 0008 & . 0030 & \[
.0027^{0.13}
\] & \[
\begin{aligned}
& \times 10^{-2} \\
& .0008
\end{aligned}
\] & . 0015 & . 0042 & . 0041 \\
\hline & \[
{ }^{k_{y}}
\] & . 0382 & . 0972 & . 0395 & . 0304 & . 0873 & . 0204 & . 0139 & . 0581 \\
\hline & \[
\begin{array}{r}
\text { MCN } \times 10^{2} \\
\text { UWHAUS }
\end{array}
\] & . 419 & . 103 & . 322 & . 345 & . 129 & . 153 & . 083 & . 239 \\
\hline & \[
k_{W_{1}} \text { UWHAUS }
\] & . \(615 \times 10^{-2}\) & \(.603 \times 10^{-4}\) & . \(232 \times 10^{-2}\) & \(.179 \times 10^{-2}\) & \(.116 \times 10^{-2}\) & 2.8010 \(0^{-3}\) & . \(87 \times 10^{-9}\) & -9.36×10 \({ }^{-2}\) \\
\hline & \[
\begin{aligned}
& \mathrm{TCN} \times 10^{2} \\
& (\mathrm{~mol} / \mathrm{L})
\end{aligned}
\] & . 882 & . 765 & . 796 & . 652 & . 765 & . 761 & . 769 & . 677 \\
\hline & MCN/TCM & . 47 & . 13 & . 40 & . 53 & . 17 & . 20 & . 11 & . 35 \\
\hline & TSS \(\times 10^{6}\) & 106.9 & 82.4 & 38.2 & 28.6 & 38.2 & 59.3 & 69.7 & 39.1 \\
\hline & RSS \(\times 10^{6}\) & . 49 & . 37 & . 32 & 1.2 & . 07 & 1.0 & 1.2 & 1.6 \\
\hline & \(\mathrm{R}^{2}(\mathrm{X})\) & 99 & 99 & 99 & 96 & 99 & 98 & 98 & 96 \\
\hline
\end{tabular}

MA - not acceptable

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(k_{v}=k_{\text {MaCW }}\) & & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { AIR }^{\text {NO }} \mathrm{UV}
\end{aligned}
\] & \(20^{\circ} \mathrm{C}\) No AIR No UV & \[
\begin{aligned}
& 4^{\circ}{ }^{\circ} \mathrm{CR} \\
& \text { NIR } \\
& \text { NO } \mathrm{UV}
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \text { No AIR } \\
& \text { No UV }
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \mathrm{AIR}^{\mathrm{UV}}
\end{aligned}
\] & \[
\begin{aligned}
& 20^{\circ} \mathrm{C} \\
& \text { NO AIR }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ}{ }^{\circ} \mathrm{ITR} \\
& \text { UTR }
\end{aligned}
\] & \[
\begin{aligned}
& 4^{\circ} \mathrm{C} \\
& \mathrm{NO}_{\mathrm{UV}} \mathrm{AIR}
\end{aligned}
\] \\
\hline \multirow{4}{*}{\(\mathrm{Pa}-\mathrm{Cu}\)} & \(k_{*}\left(\begin{array}{c}\text { (} \\ \left(h^{-1} / h\right)\end{array}\right.\) & \[
\begin{aligned}
& 1.65 \\
& (.0394)
\end{aligned}
\] & \[
\begin{gathered}
1.00 \\
(.0238)
\end{gathered}
\] & \[
\begin{aligned}
& 0.31 \\
& (.0074)
\end{aligned}
\] & \[
\begin{aligned}
& 0.21 \\
& (.0050)
\end{aligned}
\] & \[
\begin{gathered}
1.63 \\
(.0389)
\end{gathered}
\] & \[
\begin{aligned}
& 1.06 \\
& (.0253)
\end{aligned}
\] & \[
\begin{aligned}
& 0.98 \\
& (.0234)
\end{aligned}
\] & \[
\begin{aligned}
& 0.58 \\
& (.0138)
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& {[\mathrm{MCN}] \stackrel{0}{(\mathrm{~mol} / \mathrm{L})}} \\
& \mathbf{k}_{\mathrm{Fe}}\left(\mathrm{~h}^{-1}\right)
\end{aligned}
\] & . 0016 & . 0026 & . 0012 & \multicolumn{2}{|l|}{\[
\begin{gathered}
0.13 \times 10^{-2} \\
.0007 \\
.0068
\end{gathered}
\]} & . 0222 & . 0051 & . 0039 \\
\hline & UWHAUS & . 0123 & . 0194 & . 0235 & . 0438 & . 1098 & . 0391 & . 0099 & . 0111 \\
\hline & \[
\begin{array}{r}
\text { MCN } \times 10^{2} \\
\text { UWHAUS }
\end{array}
\] & . 094 & . 185 & .118 & . 129 & . 113 & . 233 & . 123 & . 289 \\
\hline \multirow[t]{6}{*}{\(\checkmark\)} & \begin{tabular}{l}
\(\mathbf{k P e}_{\mathrm{Fe}}\) \\
INHAUS
\end{tabular} & . \(48 \times 10^{-9}\) & \(.13 \times 10^{-2}\) & . \(63 \times 10^{-6}\) & . \(51 \times 10^{-3}\) & .49x10 \({ }^{-2}\) & \(.11 \times 10^{-1}\) & . \(24 \times 10^{-2}\) & -2. \(32 \times 10^{-2}\) \\
\hline & \[
\begin{aligned}
& \text { TCN } \times 10^{2} \\
& (\operatorname{mol} / \mathrm{L})
\end{aligned}
\] & . 773 & . 754 & . 719 & - 539 & . 704 & . 704 & . 742 & . 704 \\
\hline & MCT/TCN & . 12 & . 24 & . 16 & . 24 & . 16 & . 33 & . 17 & .41 \\
\hline & TSS \(\times 10^{6}\) & 67.4 & 67.3 & 38.2 & 20.1 & 41.0 & 65.4 & 69.5 & 51.3 \\
\hline & RSS \(\times 10^{6}\) & 1.3 & . 28 & . 86 & . 21 & . 02 & . 42 & . 26 & . 64 \\
\hline & \(\mathrm{R}^{2}\) (Z) & 98 & 99 & 98 & . 99 & 99 & 99 & 99 & 99 \\
\hline
\end{tabular}

MA - not acceptable

Figure H.3.1 Three-Parameter Rstination Model - Estimated MCN Values with \(95 \%\) Confidence Intervals - Zn

Figure H.3.2 Three-Parameter Estimation Model - Estimated HCw Values with 957 Confidence Intervals - Mi

Fgure R.3.3 Three-Parameter Estination Model - Estinated MCN Values with 95Z Confidence Intervals - Fe

\section*{APPENDIX H. 4}

\section*{Example Progran for Two-Paraneter Estimation Model}
- MCN, \(\mathbf{k}_{1}\)-parameters to be estimated.
- [TCN] \(]_{0}\) Equal Initial Measured Value which Changes in Time.
\(-[\mathrm{PCN}]=[\mathrm{TCN}]-[\mathrm{MCN}]\).

PROGRAM TSTOLZ I INPIST, OUTPUT, TAPETI=INPUT, TAPEG=OUTPUT,

C TWO PARAME TER FSTIMATION MOOFL
```

EXTFPNAL MCNEL
DATA NPOMITT/'

```
DATA NPKOB/1/
DATA EPSI, PSS, FLAM,FNU/1,E-6,1,E-6,0.D1,10.1
WRITFiG, 10 O) (THIITi, NPI,NP)
FOPMAT (\$Fi2.7)

\(\mathrm{YAV}=\pi\).
DO \(30^{\circ} I=1\), NO3
YAV \(=\) YAVYY(II
YAV \(=\) YAV/FLOAI (NOR)
TSS=O.
\(00^{\circ} 1=2\). 103
35 TSS=TSSt(Y(II-YAV) ©ت 2
ISOS=TSS/126000:*21
200 FORMATIIX ITOTAL SUM OF SQUARES ISEE14.7)

Y(J) \(=\) Y1
CALL PLOTPT(X(J),Y1:5)
CONTINUF(1)
MTCT=2.
OOLSIE1. NP
45 SIGNSIII=1.0
CAGM ,
C \({ }^{\text {4FALM F FNU, SCRAT, }}\)
\(0050 \mathrm{~J}=1\), NTI
CALL PLOTPT \((T, Y P(1,3), 4)\)
CALL PLOTPT TT;YPiz;j: 2)
CONIINUE
CALL OUFPL
STOP
```

l
5
SURROUTINE MOUEL(NPROA,TH,F,NOR,NP)
COMMONION,TH(2);F('S5), (2, YO(7),OFLT,NTSTFP,TT(61),NT1,YINIT
PEAL YY(3),C (z, i,W(3,q), XX,TOL:XEND
COHMON /A/G RKC, VK, UVKN
FXIERNAL FCNI
NW=3
N=?
ITMAX=1
INMAN=1
YY(3)=YINIT -YY(2)
C FIII=YINIT
CONSTANT DILT MUST RE LESS

```
```

            T=0.
            VK=-0138080
            C AKC=TH(1)
                    T\Iil=T
            \}\begin{array}{l}{Y={\mp@code{I}}\\{Yp(i,1)=YY(1)}\\{YP(2,1)=YY(2)}
            YP(2,1)=YY(2)
            Ypis,i)=YY(3
            OL=0.0aOL
                            OO 55 K=1.NTSTEP
                            CALL NVEPK (N,FCHI,XX,YY,XENN,TOL,INC,C,NW,N,IERI
                            =T*OELY( NOOS) AOET
                            JPNED=(X(JOAS) / OELT')
    ```

```

                            IFi((K/ITHAX),ITMAX).EG.K)GO 10 300
    3 0 0
GO0,55
KK=(K/ITMAX)
T(KK+I)=1
KMP(1,KK+1)=YY(1)
YP(2,KK+1)=YY(2)
55 CONTINU
NT1=KK+1
N NTI=KK
METU

```


EFAL

YPRIME (3) = -VKシYY(i)
RCIURE
 1 MIT: FLE MA FNU. SCRAT:CLI
OIMENSION
IA=IA
IA=
CEIHP
\(\left[\begin{array}{l}C=I H+N P \\ n=T C+N P\end{array}\right.\)
\(n=I C+N P\)
\(E=I n \& H P\)
\(F=E+N\)
\(1 F=A E N P\)
\(I G=F \% N O B\)

,in
 STECRN
STURN
END

```

OIMENSION TH(NR), MIFZ(NG), SITNSSNQI, Y(NOOI
DIMFNSION C(HAI, P (MAI, FINQI, PHITNAI, tBINO)
OIMENSION F(NTOI;R(NTO)
\&IMENSION TH(1); DIFZ(1), SIGNK(1): Y(1): O{1), f(1), E(1).

```

```

NPNON = NPQ3O
NOR = NHO
EPS1 = [PP1
NPST, EP2SNP
NSCRACC = S*NP*NPST *2*NOB+NP*NOB
HP ITE (LL, IOOOS NPROB, NOH, NP, NONSCRAC
calG GAS`O(i, NP, TH, TEMP, TMEF,LL)
WRITFILL'SOO2
*)
15 IFSFNU-1.0I99, 9?. 16
16 COMIINUF

```

```

    19 CONTINNEE
    5 EPSIESSIO 5.70,70
    10SO=0
        MO, MEL!NPDOB, TH, F: NOM, NPI
    ```

```

    90 SSR=SSG+R(INRIII)
    C
108 GA =GA / +NU

```

```

1 0 1
J5 = J_NON
TrMP =\IH(JJ)
THiNO= TH(j)+P(j)
O(S)=0 NS NOT

```
c
c**

CALL MCOFL(NPROB, TH. DELZ(JSI, NOT, NPI

 C. 130 TH(J) \(=\) TrMP \(2=X T * R\) (STEEPEST JESCENT)

 \(k t\)
\(k J=k J!\)
\(k J\)
\(k J\)
 160

 \(\begin{gathered}\text { CONTINUF } \\ \text { OOLS } \\ \text { I }\end{gathered}=1\). NP
 \({ }_{-0}^{1 J}=15 \frac{1}{3}-N \rho=1\), I

 \(c^{153}\)

 c
 c
 \({ }^{1}=1\)
 STFP=1.0
 \(\operatorname{SUPP}=1\)
\(\operatorname{SUHP}=0\).
 SUR:2 \(=0\).
 \(\mathrm{SOM}_{2} \mathrm{Si}^{\circ} \mathrm{r}=1\), NP

A = SCALED MOMENT MATRIX

P/E = CORRECTION VECTOR
```

11;





```
Thi I =
WRITE(LL, 70001
7000 FORMATIJOHOTFST POINT PARAMETER VALUES
HRIIF LL, 2006 (THAIT, I \(=1, ~ N P)\)
```



```
222
CONTINUE
SUM \(A=0\)
CXLL HOQEL (NPPOB, TB, F, NOH, NP)
```




```
TFITEULL, 104.3)SMMG
```



```
STCP=STFH/?
INTCNT = INTCNT \(171,2700,2700\)
\(664 \mathrm{GA}=\mathrm{F}_{\mathrm{I}} \mathrm{A}=\mathrm{FNU}\)
INTCNT = INTCNT \({ }^{+}{ }^{1}, 27002700\)
662
669
W6EGL, 1007)
```



```
CALL GASSOT1, NP. TH, TEMP. TEMP,LLI
WQITr(LL. 1040 i GA, SUMA
2253
```


## 240

```
IFIATSI =1: NP
```



```
WQITEILL, \(10091 E P S ? ~\)
265 IFIAGFISUMR-SSCI-EPS1*SSOI 266, 26E, 270
HRITFICLIG10̈) EPS:
270
2700 IFNNTLE, MIT) \(100,100,280\)
```



```
C
\(\mathbf{C}\)
\(\mathbf{C}\)
```



```
END ITERATION
```



```
(RIII. I = 1 . NO3)
```

1017 FRITF(LL; 1017)
101 COPMAT
$5 S \mathrm{~S}=\mathrm{SUMH}$
HDF =NOT-NP
I=0 call matinen
CALL MATIN(N; NP. P. I DETJ


DO $340 \mathrm{~J}=\mathrm{N}=\mathrm{I}, \mathrm{NP}$
A(JI) $=$ DIJI) 1 (E(I) EE(J))
340
 WRTIE\{LLEIU16) NP, E: TEMP, TEMP,LLI
341

391
SREV = SSOŔILIDF
SUEV $=5$ SOTISOEV
OQ 191 I

CALEGASSnl2, NP. TB, P, TEMP,LL
14
$6_{3} 050101$
416
IEMP = 0 - NO
$00420 \quad I=1$ NP
ISUAN $=K \rightarrow N$ Nit(I-1)
$r$
$1_{1}^{110: 1-1 I-1}$




415
F(k)=F(k)-
WaIt (LLL. 1 GOA)

if=itinn-IEI 4:30,435,435


```
 $9 WGITINLLISNOS4)
```




```
 1001 FORMAI??5HOINITIAL PARAMETER VALUFSULAING OIFFERENCE QUOTIENTS
```





```
 1008 FOPMAT (/1//54HOAPPROXIMATE CONFIUENCE LLMITS FOR EACH FUNCTION VAL
 1009 'MORMATI/52HOITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LE
```



 $1015^{2}$
$120 H$ TFGREES OF FYEFDOM P
1015


1034
FOKMAI /I/129HONORMALIZINN MATPIX
 ( FORMAY ©TIHOINOINI DUAL CONFIDENEE LIMITS FOR EACH PARAMETER ION LI $1040^{1}$ NEAR HYPQTHESIS



ENO
 DIMFNSION A(NVAR
PIVOTM $=A(1,1)$
OH T $=1,0$
OO 550 ICOL $=1$. HVAR
PIVOTM EAMINI(PTVOT, PIVOTMI
DET = PIVAT DET
$\mathbf{C}$
$\mathbf{C}$
$\mathbf{C}$
DIVIOF PIVOT RON BY PIVOT ELEMENT A(ICOL. ICOL) $=1.0$
 PIVOT $=$ A IICOL. ICOLSPIVOT ACICOL DO, $370 \mathrm{~L}=1$, NB

REDUCE NON-PIVOT ROHS
DOF550 Li=1, NVAR, GO TO 550


 DO $500^{\circ} \mathrm{EGO}$, NG
500 B(LIOLIEBILI, L)-B(ICOL,LIFT CONTINU
RETURN
ENU

SUQROUTINE GASSO ITYPE NQ. A, B, COLLI ITMENSION A (NQ), B(NQ), C (NQ,NI)
$\mathrm{NP}_{\mathrm{NH}}=\mathrm{ND}$
$\mathrm{NOH}=1$

$\begin{array}{ll}15 & \text { RFTURN } \\ 20 & L H O=N P\end{array}$
30 IFRLOH GTELUP) RETIMRN

60. GRITE(LL, 6001 (B(J):J=LON,LUP)

LOW2=LUP+1 1 NP) 60 TO 100


LUP $=\operatorname{LUNP}+10$
NR $={ }^{N R}{ }^{-1}$
FORMAT(10 $5 x, 17,9(5 x, 17))$
 F WD

## APPENDIX H. 5

# Three-Parameter Estimation Model (PCN, $\mathbf{k}_{\mathbf{v}}, \mathbf{k}_{1}$ ) with the Fixed MCN/TCN Ratio 

- Example Program.
- Tables of Rstimated Results.
- Plots of RSS vs MCN/TCN Ratios.

PROGRAN TSRATIO(INPUT, OUTPUT,TAOCF=INPLT,TAPGE=RUTPUT,TAPE11)
 COMMON 17/ X(25),YP(7,61), DELTONTSTEP, IT(61),NTL

THIS PROFRAM HAS PRESET MCN/TCH RATIN $\quad$ IT IS ESTIMATINGPREE CN, VOL, CDEFF. ANC MCTAL DECAY COEFF.

OATA NP,MTI/3,15/
OATA NOBJI4,
BATA EPS $^{A}$. FPS?, FLAM,FNU/1.E-6,1.F-5,0.01,10.1

206


$00113 \mathrm{I}=1$, NOR

YAV= YaV/FLOAT (NOB)

114
SOS=TS'3 (260-YAV)**?
(OMATIX, fTOTAL SUM OF SQUAPES ISAE14.7)


CALL PLOTPI(X(J), Y1,5)
OCLT=2.
NTSTFP=X(NOQI/DELT
$0015 F I=10 \mathrm{NP}$
16
C
CALL' USHAUS'NPPOT, MODEL,NOB,Y,NP,TH, IIFF,SIGNS,EPS I,EPS?,MIT, - FLAM, FMU,SCRAT, 5 ), TH, F,NOR,NP)

$T=T{ }^{3}()^{j}=1$
CAL PLOTPT $(T ; Y P(1 ; J), 4)$
CALL PLOTPT
CALL PLOTPT
13
CALL PLATPT (T;YP(B;J);20)
CONI NNEE
STOP
EN:

1

SUPKOUTINF MOCEL(NDROR,TH,F,NOB,NP)

PEAL YY(S), C $(24), H(3,9), X x$, TOLOXEND
COMMON TA/RKC,VK,UUKN
EXTERNAL FC,NI
$N=3$
$\mathrm{N}=3$
$\mathrm{x}=0$
$X=0 \dot{x}$
$F M A X=1$
IF(NTSTKP; r,T. 60 ) [TMAX=(NTSTEP/60.) +1

$Y Y(2)=J 205$
$Y Y(3)=Y Y(1)+Y Y(1)$
$Y(1)$
C CONSTANT OFLT HUSG BE LESS THAN OR EJUNL TO MINIAUN TIME HTHFFN OHSIRDATTONS

$V K=T H(?)$
$R K C=T H(3)$
RKC=TH(3)
YP(1, 1$\}=Y Y(1)$
$Y P(2,1)=Y Y(2)$
$Y P(3,1)=Y Y(3)$
$Y P(3,1)=Y Y$
$T O L=0,0001$
$\mathrm{TOL}=0$.
$\mathrm{IND}=1$
$102=1$
$D O 10 \quad K=1$, NTGTEP CALL IVEKK (N,FCNI;XX,YY;XENO,TOL,
$T=1+D E L T$
$J P R E D=(X(J O R S) / D E L T)$



$21 K K=(K / \operatorname{TTMAX})$
$T Y(K K+1)=T$
$Y P(1, K K+1)=Y Y(1)$
$Y P(1 ; K K+1)=Y Y(1)$
$Y P(2 ; K K+1)=Y Y(2)$
YP( $3, K K+1)=Y Y(3)$
$20^{10}$
CONITNUF
COHTINUE
NTI $=K K+1$
PFTURN
END



RETURN
ENO
 1 NIT, FIAM, FNU, GCPAT,LL)

DIMENSTIN SCRAT(1)
1
$I A=I A+N P$
$1 C=I$
$C=I+N P$
$1 C=I+N P$
$I n=1 C+N P$

$I G_{3}=I F+N O^{\prime}$
$\mathrm{I} H=I \mathrm{I},+\mathrm{NOB}$
$I I=I H+N P * N O Q$
$I J=I H+N$
1 FFALL HAUSY(NPROB, MORFL, NOG,Y, NP, TH, NIFF,SIGNS:EPSI, EPS2, MIT
 RETURA (IJ), Ll
RETUR
END



DIMENSION F (NOOS, R(NTO)


NPFFOB
NO
NOR
NPRSO
NOR $=$ NBO
EPS1 $=$ EP1S
EPT2 $=$ EP2S


WRITECLLE 10011
WRITEILL, ionzi NP. TH, TFMP, TMEF,LLI

15 IFIFNU-1.0199, 90 99. 16
16 COHIINUF

(IEMP. AMS(TH(I))I)99. 93. 19
CONTINUF
$G A=F L A M$
NITE $=10$
570
EPSI $=0$
$70 \underset{S S O}{\operatorname{EPS}=0}$
CALL MONEL (NPPOH, TH, F, NOS, NP)

90 SSOESSQ+R(I):R(I)
$C$
$C$
$C$
$100 \mathrm{GA}=\mathrm{GA} /$ +NU


hegin iteration

## C. WRITFIGIN:J FOHMTITH:*SS*, I5)

CALL MCAFLINPPOR, TH, DELZIJSI, NOT. NPI




131 Ofisu, $=1,131,414$



$k I=k I t$
$k J=$
$k J$


$I y_{1}=1+N P+(J-1)$

CONTINUF $1=1$.



PHI(I) =P(IT)
$c^{15}$

C

STFP=1.0


$00231^{\circ} I=1$, N
SUMI =P(I):PHI (II\& SUMI
$2 \pi 1$ SUMB = PHIITI PHITII + SUA3
231 PHIII) = P(I)
IEMP $=$ SUM1/SORT(SUM2*SUM3)


```
170
HEMP = 57 ? 95 FACOS TTENP)
```



```
24
```



```
WRITE(LL, 2006) (TATI, I = 1 (, NP)
```



```
222 IFOSINNE
SYAB=0
CALL MODEL NOPOB, TB, F, NOR, NPI
```



```
\(230 \quad\) SUMH 2 SUYTI R R(I) ERII
IFISUMA: (1,0 EPS 1) FSSQ) 66?, 662. 66
```



```
STEP=STFA/?
```



```
664
INTCNT = INTCNT \({ }^{4}\) IN \(1,2700,2700\)
662 WRITE(LL. 1007)
```



```
CALL GASSOII, NP, TH, TEMP TEMPOLLI
223 IFIFPS?i \(229,223,2,544\)
225 IFCEPSII \(270 ; 270,265\)
241
```



```
HQITE(LL, 10091 EOS?
Go ro 2 a
265 IFIAGFISUMP! SSGI-EPSIFSSOS 266, 26E, 270
```



```
\(270 \quad\) NIT \(=\) NIt +1
```



```
\(\underset{C}{C}\). ENDITERATION
280 HRITE(LL: 1 N11)
WRITEILL, 2001 (FII), \(I=1\), NORI
WRITE(LL, 10121 (RII), \(1=1\) (NOB)
```



```
1 7 5
 SSO= SUMH
 NPITEOL-NP1015)
 I}=
 792 E(I) = SaRT:(IINI),
 |I=1+MPN(I-1) -
 YJ=IT N NPPMIT-2)
```



```
340
341
 GALJ'GA=A'\\I', NP, TEMP, TEMP, A,LL)
 WRTIE(LL'1U16) NP, E, TEMP, TEMP,LL)
```



```
 NRITEICLSONOIG1 SOFV, IOF
 go 3 Ma = STRTiS
```



```
 GRIIELLL'1039, NP, TB, P, TEMP,LLI
 GAOS =1
 414 0N415k=1, NOT
```




```
 r. Or(turis = O(Lz(ISIJ?)
 c ncliuraz K+MCNO(Y-1)
```






```
 F(k)=F(k):1ryp
 F(K)=F(k)-1F'4",
 Ir=1
```



```
 Ir=:Mn-IE| 4S0,435,435
4is
```







 $1009^{\text {I }}$ FOMMAT' $/ 52$ HOITERATION STOPS - RELATIVE CHANGE IN EACH PARAMETER LE

 1012 FONMAT
1014 FORMATYZ
10
, E12.4.1H, 14.


$1040^{1}$ NEAR HYPOTHESISI 1040 FOKMAT $/ / 9 H O L A M B O A=E 10.3,4 X, 33 H S U M$ OF SQUARES AFTER REGRESSION = 1041 FOPMAT (14H DFTERMINANT $=F 12.4,6 X, 25 H$ ANGLE IN SCALEO COORO. $=$

2001 FODNATISE12. 4
2006 FORMATISE12.4)
F CO
N

```
 SURRDUIINE MATIN(A, NVAR, R'G, NH, DFT)
```




```
 PIVOT =ALICNOR MCAR
 PIVNTM =AAMINI POIVOT. PIVOTM)
 \(\stackrel{C}{\mathbf{c}}\)
 divide pividi row ay pivot element
 AICOL, ICOL \(=1.0\)
```



```
 DO \(350 \mathrm{~L}=1\); NVAR
```




```
 REDUCE NON-PIVOT ROWS
 371
 DOFIL Li=1,NVAR) GO TO 550
 TFiLA AEOATCOL
 A1 \(=1\)
 \(00450 \mathrm{~L}=1\), NVAR
```




```
 500
 BIL1, L) = B(LI, L)-B(ICOL,L)*T
 cont inue
 RETU
ENU
```


NP $=N \mathrm{NO}$
$\mathrm{NH}=\mathrm{NR} 10$
$\mathrm{NH}=\mathrm{NM/}$
LOH $=1$
LUP $=\overline{\bar{R}}$
$\begin{array}{lll}10 & \text { IF NR } \\ 15 & \text { RFTHRN } \\ \text { N }\end{array}$
$L U P=N P$



GRTTER100,600) (BIJI,J=LON,LUP)

90 OOAOI=LOWRUP(C(J.I), J=LOW,I)

ORITEILLGOH?,NP

LOW $=$ LOW +10
LUP $=$ LUP +10
$N^{2}=N R-1$
FORMAT(15 $\mathrm{F}, 17,9(5 \mathrm{x}, 17)$ )

F 10
table h.5.1. estmated parametbr values for copper-cyanide complex at pive fixed men/tce ratios

|  |  |  | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \text { NO } \mathrm{UV} \end{aligned}$ | $20^{\circ} \mathrm{C}$ <br> No AIR <br> No UV | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \text { NO } \mathrm{VV} \end{aligned}$ | $4^{\circ} \mathrm{C}$ No AIR No UV | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \mathrm{AIR} \\ & \mathrm{uv} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { UV } \end{aligned}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \mathrm{AIR} \\ & \mathrm{UV} \end{aligned}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { NO AIR } \\ & \text { UV } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Cm}_{0}$ Cm | $\begin{aligned} & \hline G \\ & 1 \\ & \mathbf{V} \\ & 8 \\ & \mathbf{n} \end{aligned}$ | $\mathrm{PCN}_{0}$ | 6. $3 \times 10^{-3}$ | $6.7 \times 10^{-3}$ | 6. $5 \times 10^{-3}$ | 6. $3 \times 10^{-3}$ | $6.5 \times 10^{-3}$ | 6. $3 \times 10^{-3}$ | 6. $2 \times 10^{-3}$ | $6.6 \times 10^{-3}$ |
|  |  | $k_{*}$ | 3. $9 \times 10^{-2}$ | $2.4 \times 10^{-2}$ | $7.4 \times 10^{-3}$ | $5.0 \times 10^{-3}$ | 3. $4 \times 10^{-2}$ | 2. $5 \times 10^{-2}$ | 2. $3 \times 10^{-2}$ | 1. $4 \times 10^{-2}$ |
|  |  | $k_{1}$ | 2. $1 \times 10^{-2}$ | 7. $1 \times 10^{-3}$ | 3. $8 \times 10^{-3}$ | 3. $3 \times 10^{-3}$ | 1. $5 \times 10^{-2}$ | 2. $4 \times 10^{-3}$ | 3. $6 \times 10^{-3}$ | 3. $1 \times 10^{-3}$ |
| $\frac{\mathrm{MCN}}{\text { TCN }}$ | - 0.0425 | $\mathrm{PCN}_{0}$ | $6.8 \times 10^{-3}$ | 8.0× $10^{-3}$ | 6. $6 \times 10^{-3}$ | 6. $3 \times 10^{-3}$ | 6. $6 \times 10^{-3}$ | 6. $6 \times 10^{-3}$ | 6. $4 \times 10^{-3}$ | 6. $5 \times 10^{-3}$ |
|  |  | $k_{*}$ | 4. $6 \times 10^{-2}$ | 1. $4 \times 10^{-2}$ | $1.8 \times 10^{-2}$ | $1.6 \times 10^{-2}$ | 5. $3 \times 10^{-2}$ | 2. $2 \times 10^{-2}$ | 2. $1 \times 10^{-2}$ | 1.4×10-2 |
|  |  | $k_{1}$ | $5.2 \times 10^{-10}$ | $6.6 \times 10^{-2}$ | $9.9 \times 10^{-10}$ | 1. $8 \times 10^{-9}$ | $1.1 \times 10^{-10}$ | $4.7 \times 10^{-10}$ | $1.2 \times 10^{-10}$ | $1.9 \times 10^{-9}$ |
| $\frac{\mathrm{MCN}}{\mathrm{TCN}}$ | - 0.085 | ${ }^{\text {PCN }}$ | 7.0×10 ${ }^{-3}$ | $7.6 \times 10^{-3}$ | $6.7 \times 10^{-3}$ | 6. $3 \times 10^{-3}$ | $7.2 \times 10^{-3}$ | $7.4 \times 10^{-3}$ | 6. $9 \times 10^{-3}$ | $6.4 \times 10^{-3}$ |
|  |  | $k$ | 5. $9 \times 10^{-2}$ | 1. $5 \times 10^{-2}$ | $1.7 \times 10^{-2}$ | 1. $5 \times 10^{-2}$ | 8. $2 \times 10^{-2}$ | $1.7 \times 10^{-2}$ | $1.7 \times 10^{-2}$ | 1. $4 \times 10^{-2}$ |
|  |  | $k_{1}$ | 4. $6 \times 10^{-3}$ | 6. $9 \times 10^{-2}$ | $2.9 \times 10^{-10}$ | 1. $8 \times 10^{-10}$ | 2. $8 \times 10^{-3}$ | 6. $5 \times 10^{-4}$ | $1.9 \times 10^{-10}$ | $1.5 \times 10^{-9}$ |
| $\frac{\text { MCN }}{\text { TCN }}$ | -0.17 | $\mathrm{rCN}_{0}$ | 6. $3 \times 10^{-3}$ | 6. $9 \times 10^{-3}$ | 6. $5 \times 10^{-3}$ | 6. $2 \times 10^{-3}$ | 6. $5 \times 10^{-3}$ | $6.7 \times 10^{-3}$ | 6. $5 \times 10^{-3}$ | 5. $9 \times 10^{-3}$ |
|  |  | $k_{V}$ | 7. $1 \times 10^{-2}$ | 1. $5 \times 10^{-2}$ | $1.5 \times 10^{-2}$ | 1. $5 \times 10^{-2}$ | 1.0×10 ${ }^{-2}$ | 2.0×10 ${ }^{-2}$ | 1. $8 \times 10^{-2}$ | $1.7 \times 10^{-2}$ |
|  |  | $k_{1}$ | $1.2 \times 10^{-2}$ | $7.4 \times 10^{-2}$ | 4. $9 \times 10^{-10}$ | 4. $7 \times 10^{-10}$ | $6.6 \times 10^{-3}$ | $4.3 \times 10^{-3}$ | 2.9×10 $0^{-3}$ | $2.8 \times 10^{-10}$ |
| $\frac{\mathrm{MCN}}{\mathrm{TCN}}$ | - 0.34 | $\mathrm{FCN}_{0}$ | $5.0 \times 10^{-3}$ | $5.4 \times 10^{-3}$ | 5. $2 \times 10^{-3}$ | 4. $5 \times 10^{-3}$ | $5.0 \times 10^{-3}$ | 5. $3 \times 10^{-3}$ | 5. $2 \times 10^{-3}$ | 4.8×10 ${ }^{-3}$ |
|  |  | $k^{*}$ | 9. $8 \times 10^{-2}$ | 1. $5 \times 10^{-2}$ | $2.0 \times 10^{-2}$ | 1. $1 \times 10^{-2}$ | $1.6 \times 10^{-1}$ | 2. $5 \times 10^{-2}$ | 2. $4 \times 10^{-2}$ | $3.7 \times 10^{-2}$ |
|  |  | $k_{1}$ | 2. $3 \times 10^{-2}$ | 8.9×10 $0^{-2}$ | 3. $1 \times 10^{-3}$ | 4.0×10 ${ }^{-4}$ | $1.2 \times 10^{-2}$ | 8. $2 \times 10^{-3}$ | $6.7 \times 10^{-3}$ | $2.7 \times 10^{-3}$ |
| $\frac{\mathrm{NCM}}{\mathrm{TCN}}=$ | - 0.68 | $\mathrm{PCN}_{0}$ | 2. $5 \times 10^{-3}$ | $2.6 \times 10^{-3}$ | $2.5 \times 10^{-3}$ | $2.4 \times 10^{-3}$ | 2. $5 \times 10^{-3}$ | 2. $5 \times 10^{-3}$ | 2. $5 \times 10^{-3}$ | $2.4 \times 10^{-3}$ |
|  |  | $k_{V}$ | 5. $2 \times 10^{+1}$ | $3.6 \times 10^{-2}$ | 5. $2 \times 10^{-2}$ | 7. $9 \times 10^{-2}$ | 5. $6 \times 10^{+1}$ | 4. $6 \times 10^{-2}$ | 4. $7 \times 10^{-2}$ | 3. $9 \times 10^{-1}$ |
|  |  | $k_{1}$ | 3. $4 \times 10^{-2}$ | $1.7 \times 10^{-2}$ | $6.2 \times 10^{-3}$ | 3. $1 \times 10^{-3}$ | 4. $1 \times 10^{-2}$ | 1. $2 \times 10^{-2}$ | $1.1 \times 10^{-2}$ | $6.1 \times 10^{-3}$ |







TABLE E. 5.4. ESTHAATED PARNETER VALUES FOR LRON-CTANIDE COMPLSX AT FIVE FIKED MCN/TCI RATIOS

|  |  |  | $\begin{aligned} & \mathbf{2 0 0} \mathrm{C} \\ & \text { AIR } \mathrm{UV} \end{aligned}$ | $20^{\circ} \mathrm{C}$ No AIR NO UV | $\begin{aligned} & 4^{\circ} \mathrm{C} \\ & \text { AIR } \\ & \text { NO } \mathrm{VV} \end{aligned}$ | $4^{\circ} \mathrm{C}$ NO AIR NO UV | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \mathrm{AIR}_{\mathrm{UV}} \end{aligned}$ | $\begin{aligned} & 20^{\circ} \mathrm{C} \\ & \text { No AIR } \\ & \text { UV } \end{aligned}$ | $\begin{aligned} & 4^{\circ} \mathrm{C} \mathbf{C} \\ & \underset{U V}{ } \end{aligned}$ | $4^{\circ} \mathrm{C}$ <br> no AIR <br> UV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Fe}-\mathrm{CW}$ | 10 | $\mathrm{PCN}_{0}$ | 6. $4 \times 10^{-3}$ | 6. $2 \times 10^{-3}$ | 5. $9 \times 10^{-3}$ | 4. $1 \times 10^{-3}$ | 5. $7 \times 10^{-3}$ | 5. $7 \times 10^{-3}$ | 6. $1 \times 10^{-3}$ | 5. $7 \times 10^{-3}$ |
|  | v | $k_{0}$ | 3. $9 \times 10^{-2}$ | 2. $4 \times 10^{-2}$ | $7.4 \times 10^{-3}$ | 5. $0 \times 10^{-3}$ | 3. $4 \times 10^{-2}$ | 2. $5 \times 10^{-2}$ | 2. $3 \times 10^{-2}$ | 1. $4 \times 10^{-2}$ |
|  | n | $k_{1}$ | 1. $6 \times 10^{-3}$ | $2.6 \times 10^{-3}$ | 1. $2 \times 10^{-3}$ | $7.4 \times 10^{-4}$ | 6. $8 \times 10^{-3}$ | 2. $2 \times 10^{-2}$ | 5. $1 \times 10^{-3}$ | $4.0 \times 10^{-3}$ |
| $\frac{\mathrm{HCR}}{\text { TCN }}$ | - 0.0425 | $\mathrm{PCN}_{0}$ | 6. $5 \times 10^{-3}$ | 6. $3 \times 10^{-3}$ | 5. $9 \times 10^{-3}$ | $4.1 \times 10^{-3}$ | 6. $0 \times 10^{-3}$ | 6. $6 \times 10^{-3}$ | 6. $2 \times 10^{-3}$ | 5. $8 \times 10^{-3}$ |
|  |  | $k^{*}$ | 3. $5 \times 10^{-2}$ | 2. $3 \times 10^{-2}$ | 1.9×10 $0^{-2}$ | $1.6 \times 10^{-2}$ | 4. $4 \times 10^{-2}$ | 2. $3 \times 10^{-2}$ | 2. $1 \times 10^{-2}$ | 1. $3 \times 10^{-2}$ |
|  |  | $k_{1}$ | 3. $2 \times 10^{-9}$ | $8.0 \times 10^{-9}$ | $7.3 \times 10^{-9}$ | 2. $9 \times 10^{-10}$ | $1.4 \times 10^{-10}$ | $1.5 \times 10^{-3}$ | $3.9 \times 10^{-9}$ | $3.3 \times 10^{-9}$ |
| $\frac{\text { MCR }}{\text { TCN }}$ | - 0.085 | $\mathrm{FCH}_{0}$ | 6. $5 \times 10^{-3}$ | 6. $4 \times 10^{-3}$ | 6. $0 \times 10^{-3}$ | 4. $1 \times 10^{-3}$ | 6. $5 \times 10^{-3}$ | 6. $4 \times 10^{-3}$ | 6. $2 \times 10^{-3}$ | 5. $8 \times 10^{-3}$ |
|  |  | $k^{*}$ | 3. $0 \times 10^{-2}$ | 2. $2 \times 10^{-2}$ | $1.9 \times 10^{-2}$ | $1.7 \times 10^{-2}$ | $8.3 \times 10^{-2}$ | 2. $5 \times 10^{-2}$ | $1.8 \times 10^{-2}$ | 1. $1 \times 10^{-2}$ |
|  |  | $k_{1}$ | $2.8 \times 10^{-10}$ | $1.1 \times 10^{-9}$ | $2.2 \times 10^{-10}$ | 4.9×1009 | $1.7 \times 10^{-3}$ | $4.4 \times 10^{-3}$ | $5.3 \times 10^{-11}$ | $4.6 \times 10^{-10}$ |
| $\frac{\mathrm{MCN}}{\text { TCN }}$ | -0.17 | $\mathrm{rCN}_{0}$ | 6. $6 \times 10^{-3}$ | 6. $3 \times 10^{-3}$ | 6. $1 \times 10^{-3}$ | 4.0×10 ${ }^{-3}$ | 5. $8 \times 10^{-3}$ | 5.9ㅈ10 ${ }^{-3}$ | 6. $1 \times 10^{-3}$ | 5.6×10 ${ }^{-3}$ |
|  |  | $k^{*}$ | 1. $4 \times 10^{-2}$ | $1.9 \times 10^{-2}$ | 2. $5 \times 10^{-2}$ | $1.8 \times 10^{-2}$ | 1. $1 \times 10^{-1}$ | 2. $9 \times 10^{-2}$ | 9. $8 \times 10^{-3}$ | 6. $9 \times 10^{-3}$ |
|  |  | $k_{1}$ | 1. $3 \times 10^{-3}$ | $2.4 \times 10^{-10}$ | 2. $1 \times 10^{-4}$ | 8. $9 \times 10^{-10}$ | 5. $2 \times 10^{-3}$ | $7.7 \times 10^{-3}$ | $2.7 \times 10^{-3}$ | $1.4 \times 10^{-3}$ |
| $\frac{\mathrm{MCN}}{\text { TCN }}$ | - 0.34 | $\mathrm{rCH}_{0}$ | 5. $2 \times 10^{-3}$ | 5. $1 \times 10^{-3}$ | 4. $8 \times 10^{-3}$ | 3. $5 \times 10^{-3}$ | 4. $5 \times 10^{-3}$ | 4. $7 \times 10^{-3}$ | 4. $9 \times 10^{-3}$ | 4. $5 \times 10^{-3}$ |
|  |  | $k_{V}$ | 1. $8 \times 10^{-2}$ | 2. $5 \times 10^{-2}$ | 3. $5 \times 10^{-2}$ | 5. $9 \times 10^{-2}$ | 0. $8 \times 10^{+1}$ | 4. $1 \times 10^{-2}$ | 1. $2 \times 10^{-2}$ | 8. $8 \times 10^{-3}$ |
|  |  | $k_{1}$ | 4.9×10 ${ }^{-3}$ | $2.9 \times 10^{-3}$ | $4.0 \times 10^{-3}$ | 2. $5 \times 10^{-3}$ | $9.7 \times 10^{-3}$ | $1.1 \times 10^{-2}$ | 4. $9 \times 10^{-3}$ | $3.2 \times 10^{-3}$ |
| $\frac{\mathrm{MCN}}{\mathrm{TCN}}=0.68$ |  | $\mathrm{rCN}_{0}$ | 2. $5 \times 10^{-3}$ | $2.4 \times 10^{-3}$ | 2. $2 \times 10^{-3}$ | $1.5 \times 10^{-3}$ | 2. $2 \times 10^{-3}$ | 2: $2 \times 10^{-3}$ | 2. $3 \times 10^{-3}$ | 2. $2 \times 10^{-3}$ |
|  |  | $k_{*}$ | 3. $5 \times 10^{-2}$ | 6. $3 \times 10^{-2}$ | 8. $7 \times 10^{-2}$ | 1. $5 \times 10^{-1}$ | 7. $6 \times 10^{+1}$ | 1.0×10 ${ }^{-1}$ | 2. $7 \times 10^{-2}$ | 1.9×10 $0^{-2}$ |
|  |  | $k_{1}$ | 8. $2 \times 10^{-3}$ | $6.1 \times 10^{-3}$ | 8. $4 \times 10^{-3}$ | 7.9×10 ${ }^{-3}$ | 4. $2 \times 10^{-2}$ | 1. $5 \times 10^{-2}$ | 6. $5 \times 10^{-3}$ | 4. $5 \times 10^{-3}$ |



Pigure H.5.1 Residual Su of Squares versus MCN/TCN Ratios - Cu


Figure H.5.2 Residual Sum of Squares versus MCN/TCN Ratios - Zn


Pigure H.5.3 Residual Sun of Squares versus MCN/TCN Ratios - NH


Pigure H.5.4 Residual Sum of Squares versus MCN/TCN Ratios - Fe

## APPENDIX H. 6

## Dot Diagrans

Estimated $\mathbf{k}_{1}$ with Respect to Temperature UV Light and Aeration at MCN/TCN $=0.17$


Figure H.6.1 Estimated $k_{1}$ at MCN/TCN $=0.17$ versus Temperature


Figure H.6.2 Estimated $k_{1}$ at MCN/TCN $=0.17$ versus UV Light


Figure E.6.3 Estimated $\mathbf{k}_{\mathbf{1}}$ at MCN/TCN $=0.17$ versus Aeration

## APPENDIX I

Low Mix Model Simulations

## I. 1 EXAMPLE CALCULATION FOR THE INITIAL VALUES OF METAL AND FREE CYANIDE IN THE LOW MIX

The single metallo-cyanide solutions and low-mix solutions theoretically have $17 \%$ of total cyanide tied up with the metal ( $17 \%$ of $200 \mathrm{mg} / \mathrm{L})$. The difference is that in the low mix, the total concentration of four metals complexed $17 \%$ of the cyanide present. The four metals involved were $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe . This synthetic mix emulates the composition of one real gold mill effluent which contained about 7, 10, 2 and $2 \mathrm{mg} / \mathrm{L}$ of $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe respectively. Therefore, the low mix had the same concentrations of these metals. The value used for $[M C N]_{0}$ in the low mix was based upon the theoretical stoichiometry. It is calculated as follows:

| Metals | Concentration <br> $(\mathrm{mg} / \mathrm{L})$ | Theoretical Stoichiometry <br> for the assumed complex | $[\mathrm{MCN}]_{\mathrm{o}}(\mathrm{mol} / \mathrm{L})$ |
| :--- | :---: | :---: | :---: |
| Cu | 7 | $(\mathrm{CN})_{3} / \mathrm{Cu}=1.228$ | 0.00033 |
| Zn | 10 | $(\mathrm{CN})_{4} / \mathrm{Zn}=1.592$ | 0.00062 |
| Ni | 2 | $(\mathrm{CN})_{4} / \mathrm{Ni}=1.773$ | 0.00014 |
| Fe | 2 | $(\mathrm{CN})_{6} / \mathrm{Fe}=2.795$ | 0.00022 |

Hence the total initial MCN (equal to $17 \%$ of $T C N$ ) is $0.00131 \mathrm{~mol} / \mathrm{L}$.
The total cyanide and metal concentrations are the only measurable initial concentrations. The total and free initial cyanide concentrations for the prepared low mix solutions are tabulated in Table I.1.1:
table 1.1.1. INITIAL values for total and free cyanide concentrations

| Conditions |  | $[\mathrm{TCN}]_{0}(\mathrm{~mol} / \mathrm{L})$ |  | $[\mathrm{FCN}]_{0}(\mathrm{~mol} / \mathrm{L})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Air | UV | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| $+$ | + | 0.00761 | 0.00722 | 0.00631 | 0.00592 |
| + | - | 0.00746 | 0.00769 | 0.00615 | 0.00638 |
| - | + | 0.00711 | 0.00765 | 0.00581 | 0.00635 |
| - | - | 0.00822 | 0.00761 | 0.00692 | 0.00631 |

The initial free cyanide concentration was calculated by subtracting calculated $[\mathrm{MCN}]_{0}$ from measured $[T C N]_{o}$ concentrations.
e.g., $0.00746-0.00131=0.00615 \mathrm{~mol} / \mathrm{L}$ of $[\mathrm{FCN}]_{\mathrm{O}}$.

## I. 2 THE EXAMPLE CALCULATION OF THE ULTRAVIOLET IRRADIATION RATE CONSTANT

The intensity of the light obtained from the UV lamp was calculated to be $I_{0}=7.68 \times 10^{-4}$ einstein*/h.

Out of four single metallo-cyanide solutions only iron cyanide was affected by UV light (see conclusions from the experimental design). Therefore, the $U V$ light rate constant ( $k_{u v}$ ) was calculated using the results obtained on the iron cyanide solution.

If the metal decay constants $k_{1}$ were plotted against $I_{0}=0$ and $I_{0}=7.48 \times 10^{-4}$ einstein/h, the slope (m) would be, for the conditions with and without UV light calculated as follows (assuming the full depth of the vessel is operative):

20, AIR, UV \& NO UV $\quad m=(0.0222-0.0026) / 7.68 \times 10^{-4}=25.5$
20, NO AIR, UV \& NO UV $m=(0.0068-0.0016) / 7.68 \times 10^{-4}=6.9$
4, AIR, UV \& NO UV $m=(0.00399-0.00074) / 7.68 \times 10^{-4}=4.3$
4, NO AIR, UV \& NO UV $m=(0.0051-0.0012) / 7.68 \times 10^{-4}=5.2$

Since the first slope is an order of magnitude different from the other three it was rejected in taking an average. Therefore, the average $m$ value for the other three conditions is $\bar{m}=5.5$ (einstein ${ }^{-1}$ ).

[^22]The UV light rate constant is proportional to the average light intensity, i.e., $k_{u v}=\mathrm{mI}_{\mathrm{a}}$. According to Beer's law (Moore, 1963) the average light intensity is equal

$$
I_{a}=I_{o} / \varepsilon z\left(1-e^{-\varepsilon z}\right)
$$

where $\varepsilon$ is the absorption coefficient or extinction coefficient ( $\varepsilon$ assumed to be equal to $10 \mathrm{~cm}^{2} / \mathrm{mol}$ ) (Kolthoff et $\mathrm{al.}$, 1969) and Z is the depth of the medium that lights go through (determined from the absorbance spectra by UV spectrophotometry to be 33 cm ).

If the term in parenthesis is assumed negligible the $k_{u v}$ becomes

$$
k_{u v}=m \frac{I_{0}}{\varepsilon z}=\frac{5.5\left[\frac{1}{\text { einst. }}\right] \times 7.68 \times 10^{-4}\left[\frac{\text { einst. }}{\mathrm{h}}\right]}{10\left[\frac{\mathrm{~cm}^{2}}{\mathrm{~mol}}\right] \times 33 \mathrm{~cm} \times \frac{55.4 \mathrm{~mol}}{1 \mathrm{~L}} \times \frac{\mathrm{lL}}{1000 \mathrm{~cm}^{3}}}=0.0023\left(\mathrm{~h}^{-1}\right)
$$

## APPENDIX 1.3

## The Results of the Low Mix Model Fit and the <br> Example of The Computer Prograns Used




Figure I.3.2 Low Mix - $4^{\circ} \mathrm{C}$, NO AIR, UV


Figure 1.3.3 Low Mix - $4^{\circ} \mathrm{C}$, NO AIR, HO UV


Figure 1.3.4 Low Mix - $20^{\circ} \mathrm{C}$, AIR, OV


Pigure 1.3.5 Low Mix - $20^{\circ} \mathrm{C}$, AIR, WO WV


Pigure 1.3.6 Low Mix - $4^{\circ} \mathrm{C}$, AIR, UV
Time $\times 10^{2}(h)$


Figure I.3.7 Low Miz - $4^{\circ} \mathrm{C}$, AIR , $\mathbf{N O}$ UV

```
 PROGRAM MIX (INPUT,OUTPUT.TAPES=INPUT.TAPEG=OUTPUT,TAPE11)
 DIMENSION TH(12)
 DIMENSIONYTH(12)(24),H(7,9),X,TOL,XEND
 REAL COMMON /A/'RKC,RKZ,RKN,RKF,RKU,UK,U,AS
 COMMON /A/GRKC
 EXTERNAL FCN1
 READ(11,*) (TH(I),I=1,IZ)
 WRITE(G,*) (TH(I):I=1:I2)
 NHE7
 N=7
 x=8.8
 Y(1)=TH(1)
 Y(2)=TH(2)
 Y(2) =TH(2)Y(2)
 Y(4)=TH(4)
 Y(4)=TH(4)
 Y(5)=TH(5)
 Y(6) =TH(6)
 RKC=TH(B)
 RKZ=TH(9)
 RKN=TH(1E)
 RKN=TH(1E)
 RKU=TH(12)
 QKUETH(12,
 UK=TH(3
 U=2000
 AS=47.78
 TOL=8.8e8s
 IND=1
 CALL PLOTPT(X,Y(1):4)
 CALL PLOTPT(X,Y(2),Z)
 CALL PLOTPT(X,Y(3),28)
 HRITE(G,10BQ)
 HRITE(G:20日e)
 FORMAT(18X,"X", 12X,"Y(1)*, 12X,"Y(2)", 12X,"Y(3)")
 WRITE(G,2000) X,Y(1),Y(2):Y(3)
2888
FORMAT(6X,FG.2,6X,F1E.7.6X,F18.7,6X,F18.7)
DO 10 K=1.32
XEND=FLOAT (K)*1O.
 CALL DUERK (N,FCNL,X,Y, XEND,TOL,IND,C,NH,M,IER)
 IF (IND.LT.E.OR.IER.GT.O) GOTO 2E
 HRITE (6;30日8; X,Y(1;,Y(2),Y(3)
 FORMAT(5X,FG.2,6X,F10.7,6X,F18.7,6X,F12.7)
 CALL PLOTPT(X,Y(1);4)
 CALL PLOTPT(X,Y(2),2)
2& CONTINUE
 READ(11.#)NOBS
 DO 15 J=1.NOBS
 READ(11,年)XO,YO
 Y&三YO<Z6000
 HRITE(G,官)XO,YI
 CALL PLOTPT(XO,Y&.S)
 CONT INUE
 CALL OUTPLT
 STOP
 CONT INUE
 STOP
 END
 SUBROUTINE FCNI (N,X,Y, YPRIHE)
 DIMENSION TH(12)
 COMMON /A/ RKC,RKZ,RKN,RKF,RKU,UK,U,AS
 REAL Y(N),YPRIME(N),X
 REAL YME (A)Y),YPRIME(N):X
 YPRIME(4)E-RKC#Y(4)
 YPRIME(5):-RKZ*Y(5)
 YPRIME(6)=-RKN*Y(6)
 YPRIME(7)=(-RKF#Y(7))-RKU#Y(7)
 YPRIME (2):YPRIME(4)+YPRIME (5)+YPRIME (6) +YPRIME(7)
 YPRIME (1)=-YPRIME (2)-(UK#URAS*Y(1))
 YPRIME(3)=-UK&UCAS#Y(I)
 RETURN
 END
```

```
 PROGRAM DATA3(INPUT,OUTPUT,TAPES=INPUT,TAPEG=OUTPUT,TAPE11)
 DIMENSION TH(11)
 INTEGER N,IND,NH,IER,K
 Y(7),C(24),H(7, 9),X,TOL XEND
 COMMON /A/ RKC,RKZ,RKN,RKF,UK
c
c
```



```
C THIS PROGRAM DOES MODELLING OF A MIX WITH NO UU EFFECT: IT REOUIRES
C TH(11),NOBS AND DATA SET
C
```



```
c
 EXTERNAL FCN1
 READ(11,%) (TH(I),I=1,11)
 WRITE(G,*) (TH(I),I=1,11%)
 NW=7
 N=7
 X=0.0
 Y(1) =TH(1)
 Y(2)=TH(2)
 Y(3)=Y(1)+Y(2)
 Y(4)=TH(4)
 Y(4)=TH(4)
 Y(5)=TH(5)
 Y(7)=TH(7)
 RKC=TH(8)
 RKZ=TH(9)
 RKN=TH(10)
 RKN=TH(18)
 RKF=TH(11)
 UK=TH(3)
 TOL=8.
 IND=1
 NRITE(6,2000)
2000 FORMAT(1&X,"X", 12X,"Y(1)",12X,"Y(2)",12X,"Y(3)")
 HRITE(6,7000) }X,Y(1),Y(2),Y(3
700日 FORMAT(6X,F6.2,6X,F10.7,6X,F10.7,6X,F10.7)
 DO 10 K=1.35
 XEND=FLOAT (K):#10.
 CALL DUERK (N,FCN1, X,Y, XEND,TOL,IND,C,NH,H,IER)
 IF (IND.LT.Q.OR.IER.GT.E) GOTO ZQ
 WRITE(6,3000) X,Y(1),Y(2),Y(3)
```



| 60.00 | .0055273 | . 0088082 | . 8863355. |
| :---: | :---: | :---: | :---: |
| 78.80 | . 0853014 | .0007620 | . 0060634 |
| 80.80 | . 8850807 | .0007217 | . 0058025 |
| 90.00 | . 0048661 | . 0006865 | . 0055526 |
| 188.80 | . 0046578 | . 0006554 | . 0053133 |
| 110.00 | . 0044563 | . 0006280 | . 8058842 |
| 120.80 | . 0042617 | . 0006035 | . 0048652 |
| 130.00 | . 8048741 | . 0805816 | . 8846557. |
| 148.00 | . 8838936 | . 0005619 | . 0844555 |
| 150.80 | . 0037202 | .0005441 | . 0042642 |
| 160.00 | . 0035537 | .0005278 | . 10840815 |
| 170.00 | . 0833948 | . 0005129 | . 0039069 |
| 180.00 | . 0032410 | . 8084991 | . 0037402 |
| 190.00 | . 0030946 | . 0804864 | . 1035810 |
| 200.00 | . 0029545 | . 0804745 | . 1034298 |
| 210.00 | .0028205 | . 0004634 | .0032839 |
| 220.00 | . 0026925 | . 0004529 | . 8031454 |
| 230.00 | . 0825781 | . 0804431 | . 0030132 |
| 240.00 | . 0024533 | . 0004337 | .0028070 |
| 250.00 | . 9023417 | . 0804248 | . 0027665 |
| 268.00 | . 8022353 | . 0004162 | . 0826515 |
| 270.00 | .0021336 | .0004081 | .0025417 |
| 280.00 | . 0020367 | . 0004082 | . 0024369 |
| 290.00 | . 0019442 | . 8083927 | . 0023369 |
| 300.00 | .0818568 | .0003854 | .0022414 |
| 310.08 | .0017719 | . 0883784 | . 1821503 |

-. . 8 . 2238769238769
19. . 888115384615385 24. . 007962538461536 41. . 8875
46. . 807423076923077
72. .006615384615385
144. . 095846153846154
151. . 005538461538462
168. .084884615384615
175. .084538461538462 199. . 803588461538462 216. .083253846153846
223. .803219230769231
241. . 082815384615385 247. .002792307692308 312. .002119230769231
. 8863355
. 0060634
. 1058025
.0055526
.8053133
. 8058942
. 0048652 .8846557 .0844555 . 0042642 . 10840815 . 6839869
1035816 . 8034298
. 0032839
. 0831454
. 0028870
. 1027665
. 0026515
.0024369
. 0023369
. 1821503

# APPENDIX J <br> Example Calculations for: 

- High Mix Model Simulations.
- Barren Solution Model Simulations.
- Bffect of pH.
J. 1 EXAMPLE CALCULATION FOR THE INITIAL VALUES OF METAL AND FREE CYANIDE IN THE HIGH MIX

The high mix cyanide solution was designed to have metals complexing with $117 \%$ of total cyanide (200 mg/L). Hence, when complexes with the metals $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ni}$ and Fe are formed, there is an excess of free metal. The characteristics of the real gold mill effluent was emulated as with the low mix, but there was proportional increase in the metal concentration. Therefore, the values were:

| Metals <br> $(\mathrm{mg} / \mathrm{L})$ | Theoretical <br> Stoichiometry | $[\mathrm{MCN}]_{0}$ <br> $(\mathrm{mg} / \mathrm{L})$ | $[\mathrm{MCN}]_{\mathrm{o}}$ <br> $(\mathrm{mol} / \mathrm{L})$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Cu}=48.7$ | $(\mathrm{CN})_{3} / \mathrm{Cu}=1.228$ | 59.79 | $\underline{0.002298}$ |
| $\mathrm{Zn}=69.5$ | $(\mathrm{CN})_{4} / \mathrm{Zn}=1.592$ | 110.68 | 0.004254 |
| $\mathrm{Ni}=13.9$ | $(\mathrm{CN})_{4} / \mathrm{Ni}=1.773$ | 24.66 | 0.000948 |
| $\mathrm{Fe}=13.9$ | $(\mathrm{CN})_{6} / \mathrm{Fe}=2.795$ | 38.87 | 0.001494 |

Total initial metal cyanide concentration $234.00 \mathrm{mg} / \mathrm{L}=$ 0.008994 (mol/L).

The total cyanide concentrations recorded for the prepared high mix solutions were as tabulated:

| Conditions |  |  | $[\mathrm{TCN}]_{0}(\mathrm{~mol} / \mathrm{L})$ |  |
| :---: | :---: | :---: | :---: | :---: |
| AIR | UV |  | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| + | + |  | 0.00692 | 0.00742 |
| + | - |  | 0.00761 | 0.00765 |
| - | + |  | 0.00738 | 0.00734 |
| - | - |  | 0.00761 | 0.00753 |


#### Abstract

In order to determine metal cyanide concentrations and avoid having negative initial values for free cyanide (because our metal cyanide is higher than the total cyanide concentration) the calculations were carried out in two ways:




$$
\begin{aligned}
\mathrm{Cu}-\mathrm{CN} & =0.001767 \mathrm{~mol} / \mathrm{L} \\
\mathrm{Zn}-\mathrm{CN} & =0.003271 \\
\mathrm{Ni}-\mathrm{CN} & =0.000729 \\
\mathrm{Fe}-\mathrm{CN} & =0.001149
\end{aligned}
$$

Other conditions are as tabulated:

| Conditions |  |  | \% MCN |
| :---: | :---: | :---: | :---: |
|  |  | Substracted |  |
| AIR | UV | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| + | + | 23.1 | 12.4 |
| + | - | 16.0 | 15.0 |
| - | + | 18.0 | 18.3 |
| - | - | 16.0 | 16.2 |

ii) When high mix cyanide solution was made the $\mathrm{Cu}, \mathrm{Zn}$ and Ni salts were added to the cyanide solution first and $\mathrm{Fe}(\mathrm{CN})_{6}^{3-}$ the last. The assumption for the second simulation was that during this process the complexes of $C u-C N$ and $Z n-C N$ break up easily releasing $C N^{-}$. Excess Ni and Fe maybe present to react with freed $\mathrm{CN}^{-}$before it can be lost by volatilization. Hence, net effect, kinetically, is that Fe and Ni have their full equivalent of $C N^{-}$and the remainder is assigned to Cu and Zn . Therefore, 56 to $66.5 \%$ of total Cu and 75 to $86.5 \%$ of total Zn concentration form a complex with present cyanide, as tabulated:

| Conditions |  | \% $\mathrm{Cu}-\mathrm{CN}$ |  | \% $\mathrm{Zn}-\mathrm{CN}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AIR | UV | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ | $4^{\circ} \mathrm{C}$ | $20^{\circ} \mathrm{C}$ |
| + | $+$ | 56.0 | 63.0 | 75.0 | 83.0 |
| + | - | 65.0 | 66.5 | 86.5 | 86.0 |
| - | + | 63.0 | 62.0 | 82.0 | 82.5 |
| - | - | 65.0 | 64.0 | 86.5 | 85.0 |

In the case of the lowest measured total cyanide, for example the individual metal cyanide concentrations became:

$$
\begin{aligned}
& \mathrm{Cu}-\mathrm{CN}(56 \%)=0.001287 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{Zn}-\mathrm{CN}(75 \%)=0.003190 \\
& \mathrm{Ni}-\mathrm{CN}(100 \%)=0.000948 \\
& \mathrm{Fe}-\mathrm{CN}(100 \%)=0.001494 \\
& {[\mathrm{MCN}]_{0}=0.00692 \mathrm{~mol} / \mathrm{L}}
\end{aligned}
$$

Adjusted

## J. 2 EXAMPLE CALCULATION OF THE INITIAL CYANIDE CONCENIRATIONS FOR THE MODEL APPLICATION ON BARREN SOLUTIONS

When the experiments commenced the main characteristics for the examined barren solutions were:

| Barren <br> Solution | TCN <br> $(\mathrm{mol} / \mathrm{L})$ | $\mathrm{Cu}_{\mathrm{T}}$ <br> $(\mathrm{mg} / \mathrm{L})$ | $\mathrm{Zn}_{\mathrm{T}}$ <br> $(\mathrm{mg} / \mathrm{L})$ | $\mathrm{Ni}_{\mathrm{T}}$ <br> $(\mathrm{mg} / \mathrm{L})$ | $\mathrm{Fe}_{\mathrm{T}}$ <br> $(\mathrm{mg} / \mathrm{L})$ | pH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#1 | 0.00558 | 7.8 | 31.0 | 1.5 | 0.1 | 11.5 |
| $\# 2$ | 0.01134 | 15.0 | 127.0 | 0.7 | 5.7 | 12.0 |
| $\# 3$ | 0.00490 | 7.7 | 1.1 | 0.5 | 10.0 | 11.6 |

The possible presence of any other metal or ligand in these barren solutions was at this point omitted from consideration.

Assuming only the presence of the same complexes as in synthetic solutions and taking into consideration their theoretical stoichiometry, the initial metal and free cyanide concentrations were calculated as in the following example (\#l barren solution):

| Metal | Theoretical Stoichiometry | $[\mathrm{MCN}]_{0}(\mathrm{~mol} / \mathrm{L})$ |
| :---: | :---: | :---: |
| $\mathrm{Cu}=7.8 \mathrm{mg} / \mathrm{L}$ | $(\mathrm{CN})_{3} / \mathrm{Cu}=1.228$ | 0.000368 |
| $\mathrm{Zn}=31.0$ | $(\mathrm{CN})_{4} / \mathrm{Zn}=1.592$ | 0.001898 |
| $\mathrm{Ni}=1.5$ | $(\mathrm{CN})_{4} / \mathrm{NL}=1.773$ | 0.000102 |
| $\mathrm{Fe}=0.1$ | $(\mathrm{CN})_{6} / \mathrm{Fe}=2.795$ | 0.000011 |
|  |  | 0.002379 |

Total theoretical $[\mathrm{MCN}]_{0}$ concentration $=0.002379$ (mol/L)

```
The total cyanide determined analytically in this barren solution was \([\mathrm{TCN}]_{0}=0.0055769\) (mol/L). The initial free cyanide concentration was obtained by subtracting calculated [MCN]。 from the measured \([\mathrm{TCN}]_{0}\) -
The same stoichiometry was applied for the other two barren solutions according to their metal and total cyanide content.
```


## J. 3 HODELLING EPFECTS OF pH UPON VOLATILIZATION OF RCN

The model equations used for the synthetic mixes were all made with the fixed pH of 7.0 in mind. When the model was to be used on the barren solutions certain adjustments had to be made on the equations to compensate for the change in pH during the degradation process.

It has been assumed (Chapter 7), that HCN and $\mathrm{CN}^{-}$are in equilibrium according to the reaction:

$$
[\mathrm{HCN}] \stackrel{+}{\leftrightarrows}\left[\mathrm{H}^{+}\right]+[\mathrm{CN}]
$$

The dissociation constant for this reaction is

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]}{[\mathrm{HCN}]}=4.93 \times 10^{-10} \quad(\mathrm{pKa}=9.3)
$$

Therefore

$$
\mathrm{K}_{\mathrm{a}}[\mathrm{HCN}]=\left[\mathrm{H}^{+}\right]\left[\mathrm{CN}^{-}\right]
$$

and the $\left[\mathrm{CN}^{-}\right]$is defined as

$$
\begin{equation*}
\left[\mathrm{CN}^{-}\right]=\frac{\mathrm{Ka}[\mathrm{HCN}]}{\left[\mathrm{H}^{+}\right]} \tag{1}
\end{equation*}
$$

The term "free cyanide" is defined as the sum of the molecular HCN and cyanide ion $\mathrm{CN}^{-}$; 1.e.,

$$
[\mathrm{FCN}]=[\mathrm{HCN}]+\left[\mathrm{CN}^{-}\right]
$$

If we replace the $\left[\mathrm{CN}^{-}\right]$with the value from Eq. (1) total free cyanide will be equal

$$
[\mathrm{FCN}]=[\mathrm{HCN}]+\frac{\mathrm{Ka}[\mathrm{HCN}]}{\left[\mathrm{H}^{+}\right]}=[\mathrm{HCN}]\left(1+\frac{\mathrm{Ka}}{\left[\mathrm{H}^{+}\right]}\right)
$$

From here the concentration of molecular HCN is equal to

$$
\begin{equation*}
[\mathrm{HCN}]=\frac{[\mathrm{FCN}]}{1+\frac{\mathrm{Ka}}{\left[\mathrm{H}^{+}\right]}} \tag{2}
\end{equation*}
$$

From the definitions for pH and pKa values

$$
\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}} \text { and } \mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pK}}
$$

When replaced in the Eq. (2) the HCN concentration becomes equal

$$
\begin{equation*}
[\mathrm{HCN}]=\frac{[\mathrm{FCN}]}{1+\frac{10^{-\mathrm{pK}}}{10^{-\mathrm{pH}}}} \tag{3}
\end{equation*}
$$

At pH of $7[\mathrm{HCN}]=0.995[\mathrm{FCN}]$, justifying the approximation used in modelling the synthetic solutions that [HCN] equals FCN. Therefore, the value for molecular $H C N$ in the model was replaced by the equation (3).

The computer program used for the model simulation on barren solutions called BARRMIX is attached.

- Example Computer Progran Used for Modelling on Barren Solutions


## DIMENSION TH(12),PH(4), TOES(40)

Y(7), C(24), H(7, 9), X,TOL, XEND
SOMMON /A RKC, RKZ, RKN,RKF, INK, UK, PHE
EXTERMAL FCMI
READ (11.由) (TH(I),I=1.12)
HRITE(6, H) (TH(I),I=1,12)
READ (11, m)NOES
DO $15 \mathrm{~J}=1$.NOBS
READ (11, $\quad$ ) XO, YO,PH1
$\sim_{1}=$ YO/26088
PH (J) $=$ PHI
TOBS(J) $=\times 0$

EALL PLOTPT(XO,YI,5)
15
COMTINUE
PH(NOBS +1 ) = PH(NOBS)
TOBS (NOBS +1) $=$ TOBS (NORS $) 450$.
$\mathrm{MN}=7$
$M=7$
$x=8.8$
$Y(1)=T H(1)$
$Y(2)=T H(Z)$
$Y(3)=Y(1)+Y(2)$
$Y(4)=T H(4)$
$Y(5)=T H(5)$
$Y(E)=T H(G)$
$Y(7)=T H(7)$
RKC=TH(B)
RKZ = TH(9)
RKN=TH(10)
RKF =TH(11) UUK =TH(12)
VK=TH(3)
TOL = B. Beas
IND=1
C
CALL PLOTPT(X,Y(1),4)
CALL PLOTPT(X,Y(2),2)
CALL PLOTPT(X,Y(3),20)
MRITE(6,180®)

```
1000 FORMAT (1EX,"X", 12X,"Y(1)",12X,"Y(2)",12X,"Y(3)")
 NRITE(G,2000) X,Y(1),Y(2),Y(3)
 2000 FORMAT(3X,F10.5,6X,F1E.7,6K,F10.7,6X,F10.7)
 DO 1% K=1,132
 KEND=FLOAT(K)*IO
 I2=XEND
 DO 30 I=&,NORS
 12=TOBS(1)
 3=TOES(1+1)
 TF(I1.LE.I2.AND.IE.LE.I3)GO TO 32
 CONTINUE
 PH1 =PH(I)
 HRITE(6, #)PH1
 CALL DUERK (N,FCN1,X,Y, XEND,TOL,IND,C,NN,M,IER)
 IF IIND.LT.G.OR.IER.GT.E) GOTO 20
 WRITE(6,300Q) X,Y(1),Y(2),Y(3)
ORMAT(3X,F1E.5,6X,FiE.7,6X,F1E.7,6X,F18.7)
CALL PLOTPT(X,Y(1),4)
CALL PLOTPT(X,Y(2),2
CALL PLOTPT(X,Y(3),20)
1- CONTINUE
CALL OUTPLT
gTOP
CONTINUE
BTOP
END
SUBROUTIME FCNI (N,X,Y,YPRIME)
DIMENSION TH(12), PH(48),TOBE(4E)
COMMON /A/ RKC,RKZ,RKN,RKF,IUK,UK,PH&
REAL
Y(N),YPRIME(N),X
PK1 =9.0
YPRIME(4) =-RKC&Y(4)
YPRIME(5) =-RKZ*Y(5)
YPRIME(6)=-{RKN*Y(6))
YPRIME(7) =(-RKF&Y(7))-UUK曹Y(7)
YPRIME(2)=YPRIME(4)+YPRIME(5)+YPRIME (6) +YPRIME(7)
YPRIME (1)=-YPRIME(2)-(UK*Y(1)/(1+18**(-PK1)/18*車(-PH1)))
YPRIME(3) =-UK*Y(1)/(1+10橡(-PK1)/1目稙(-PH1))
RETURN
END
```


[^0]:    * Excess cyanide gives metallic mercury and the $\mathrm{Hg}^{2+}$ complex, Hg (CN) ${ }_{4}{ }^{2-}$ ** Values in parentheses from Broderius, 1973.

[^1]:    4.1 The Effect of Temperature, UV Light and Concentration In order to examine the effect of temperature, all bench scale experiments were carried out at $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$. The $20^{\circ} \mathrm{C}$ temperature was 43

[^2]:    * "Probability transform" term used in this thesis refers to the linear units (mm) read off the probability graph in order to be able to perform linear regression calculations.

[^3]:    * Stumm and Morgan (1981). For a very rapid diffusion controlled reaction, $E$ has a range of 12.6 to $21 \mathrm{~kJ} / \mathrm{mol}$ and for slow reactions controlled by chemical steps, E of about $70 \mathrm{~kJ} / \mathrm{mol}$ (a pseudo-first order rate constant). Moore (1962) - for unimolecular gas phase decomposition $E=54.4 \mathrm{~kJ} / \mathrm{mol}$.

[^4]:    * GAUSHAUS now called UWHAUS.

[^5]:    * The Arrhenius' equation for the temperature effect on the rate constant was considered in the individual $k$ values for $4^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ but not in calculating the global average value.

[^6]:    - [MCN] lower than observed.

[^7]:    * High estimated $k_{v}$ value as a result of a fast volatilization process.
    * Low estimated $k_{1}$ value, the result of either long volatilization process and ahort time of observation for metal decay, during which not much change in cyanide concentration occurred, or short volatilization procesm

[^8]:    * Rejected as inconsistent.

[^9]:    * Stumm and Morgan (1981) - For very rapid diffusion controlled reactions they found $E$ to have a range of 12.6 to $21 \mathrm{~kJ} / \mathrm{mol}$ and a slow reaction controlled by chemical steps to have $E=70 \mathrm{~kJ} / \mathrm{mol}$ (for a psuedo-first-order rate constant). On the same subject, Moore (1962) referred to a unimolecular gas phase decomposition with $\mathrm{E}=54.4 \mathrm{~kJ} / \mathrm{mol}$.

[^10]:    $\mathrm{CN}_{\mathrm{W}}$ - Weak acid dissociable cyanide.
    I = Inftial time.
    F = Final time.

[^11]:    - Values in parenthesia were not used tor modelling purposes.

[^12]:    - Valuen in paranthenie ware not uned for modelline purposes.
    - The cut-off point.

[^13]:    *Values in parenthesis were not used for modelling purposea.

    - The cut-off point.

[^14]:    * Values in parenthesis were not used for modelling purposes.

[^15]:    * Values in parenthesis were not uaed for modelling purposee.
    - The cut-off point.

[^16]:    * Values in parenthesie were not used for modelling purposes.
    - The cut-off point.

[^17]:    - Values in parenthesis ware not used for modelling purposes.
    - The cut-off point.

[^18]:    * Values in parentheale were not used for modelling purposes.
    - The cut-off point.

[^19]:    * Values in parentheale were not used for modelling purposea.
    - The cut-off point.

[^20]:    * Values in parenthesis were not used for modelling purposes.
    - The cut-off point.

[^21]:    * "Probability transform" term used in this thesis refers to the lower units (mm) read off the probability graph in order to be able to perform linear regression calculations.

[^22]:    * Einstein - a unit of light energy used in photochemistry equal to Avogadro's number times the energy of one photon of light of the frequency in question.

