SEDEX Deposits
(Sedimentary Exhalative)
SEDEX Ore
Zn-Pb Reserves and Production by Deposit Type

Zinc Metal Reserves by Deposit Type
- Carbonate-hosted: 54%
- Volcanic rock-hosted (VMS): 23%
- Clastic sediment-hosted (SEDEX): 11%
- Other/Unidentified: 9%
- Vein: 3%

Lead Metal Reserves by Deposit Type
- Carbonate-hosted: 61%
- Volcanic rock-hosted (VMS): 18%
- Clastic sediment-hosted (SEDEX): 16%
- Other/Unidentified: 3%
- Vein: 2%

Zinc Production by Deposit Type
- Carbonate-hosted: 31%
- Volcanic rock-hosted (VMS): 25%
- Clastic sediment-hosted (SEDEX): 9%
- Other: 30%
- Vein-hosted: 5%

Lead Production by Deposit Type
- Carbonate-hosted: 25%
- Volcanic rock-hosted (VMS): 26%
- Vein-hosted: 11%
- Clastic sediment-hosted (SEDEX): 33%
- Other/Unidentified: 5%
Grade and Tonnage of all SEDEX Deposits
Grade and Tonnage of some SEDEX Deposits

<table>
<thead>
<tr>
<th>Country</th>
<th>Deposit</th>
<th>Tonnage of ore in Mt (reserves and past production)</th>
<th>Grade</th>
<th>By-products</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cu%</td>
<td>Pb%</td>
<td>Zn%</td>
</tr>
<tr>
<td>Australia</td>
<td>Broken Hill</td>
<td>180</td>
<td>0.2</td>
<td>11.3</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>McArthur River</td>
<td>237</td>
<td>0.2</td>
<td>4.1</td>
<td>9.2</td>
</tr>
<tr>
<td></td>
<td>Mount Isa</td>
<td>88.6</td>
<td>0.06</td>
<td>7.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Canada</td>
<td>Howard’s Pass</td>
<td>100</td>
<td>—</td>
<td>1.5</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td>Sullivan</td>
<td>160</td>
<td>—</td>
<td>6.6</td>
<td>5.9</td>
</tr>
<tr>
<td>Germany</td>
<td>Meggen</td>
<td>60</td>
<td>0.2</td>
<td>1.3</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>Rammelsberg</td>
<td>30</td>
<td>1.0</td>
<td>9.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Ireland</td>
<td>Navan</td>
<td>70</td>
<td>—</td>
<td>2.6</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>Silvermines</td>
<td>18.4</td>
<td>—</td>
<td>2.8</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Tynagh</td>
<td>12.3</td>
<td>0.4</td>
<td>4.9</td>
<td>4.5</td>
</tr>
<tr>
<td>RSA</td>
<td>Gamsberg</td>
<td>93.5</td>
<td>—</td>
<td>0.6</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Lower to Middle Proterozoic
Middle Proterozoic
Silurian
Middle Proterozoic
Devonian
Devonian
Carboniferous
Carboniferous
Carboniferous
Middle Proterozoic
Sedex deposits of the Selwyn Basin
Tom SEDEX Deposit, Yukon

15.7 x10⁶ tons
7% Zn, 4.6% Pb,
49 ppm Ag

Stratified ores: **Black facies** (carbonaceous chert, sphalerite, galena); **Grey facies** (grey chert, barite, sphalerite); **Pink facies** (chert, pink, cream, black sphalerite, barite, galena)

![Pink Facies Image]
Selwyn Basin and Extensional tectonics
Distribution of Sedex Deposits relative to Late Devonian Paleogeography
Distribution of Sedex Deposits relative to Proterozoic Paleogeography

DISTRIBUTION OF PROTEROZOIC SEDEX ZN–PB DEPOSITS

- Rajpura–Dariba, Ambaji
- Zawar
- McArthur River
- Broken Hill
- Mount Isa
- Sargipali
- Aggeneys
- Gamsberg
- Ducktown
- Balmat–Edwards

LEGEND
- Sediment linkage
- Mesoproterozoic sedimentary rocks >2km thick
- 1.5 Ga mafic sills and dykes
- Generalized area of 1.5-1.4 Ga Mesoproterozoic intrusive rocks
- 1.5-1.4 Ga granite-ryolite province
- Century
- Mount Isa, Hilton, etc.
Distribution of SEDEX Deposits with Time
Marine $\delta^{34}\text{S}$ and SEDEX deposits
Atlantis II Deep a SEDEX Deposit in the making
Antlantis II Deep

- **Density stratified brine pool**
- **Overflow brine pool**
- **Stockwork**
- **Fault zone**
- **Massive sulphide body**

<table>
<thead>
<tr>
<th>Red Sea</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>60</td>
</tr>
<tr>
<td>pH</td>
<td>5.5</td>
</tr>
<tr>
<td>Na</td>
<td>92600</td>
</tr>
<tr>
<td>K</td>
<td>1870</td>
</tr>
<tr>
<td>Ca</td>
<td>5150</td>
</tr>
<tr>
<td>Mg</td>
<td>764</td>
</tr>
<tr>
<td>SiO₂</td>
<td>60</td>
</tr>
<tr>
<td>Cl</td>
<td>156000</td>
</tr>
<tr>
<td>SO₄</td>
<td>840</td>
</tr>
<tr>
<td>H₂S</td>
<td>?</td>
</tr>
<tr>
<td>Σ CO₂</td>
<td>140</td>
</tr>
<tr>
<td>Fe</td>
<td>81</td>
</tr>
<tr>
<td>Mn</td>
<td>82</td>
</tr>
<tr>
<td>Zn</td>
<td>5.4</td>
</tr>
<tr>
<td>Cu</td>
<td>0.3</td>
</tr>
<tr>
<td>Pb</td>
<td>?</td>
</tr>
<tr>
<td>Ba</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Creating the Environment for SEDEX Deposits
The Rift Environment
Towards a SEDEX model
Conditions of Metal Transport/Deposition